Skip to main content
Log in

Comparison of Responses to Electrical Stimulation and Whisker Deflection Using Two Different Voltage-sensitive Dyes in Mouse Barrel Cortex in Vivo

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We examined the spatial structure of noise in optical recordings made with two commonly used voltage-sensitive dyes (RH795 and RH1691) in mouse barrel cortex in vivo, and determined that the signal-to-noise ratio of the two dyes was comparable when averaging over barrel-sized areas, or at single pixels distant from large blood vessels. We examined the spatiotemporal development of whisker- and electrically-evoked optical responses by quantifying the area of activated cortical surface as a function of time. Whisker and electrical stimuli activated cortical areas between 0.2–2.0 mm2 depending on intensity. More importantly, both types of activation recruited cortical area at similar rates and showed a linear relationship between the maximal activated area and the peak rate of increase of the activated area. We propose a general rule of supragranular cortical activation in which the initial spreading speed of the response determines the total activated area, independent of the type of activation. Finally, despite comparable single-response kinetics, we observed greater paired-pulse depression of whisker-evoked responses relative to electrically-evoked responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bernardo K.L., McCasland J.S., Woolsey T.A., Strominger R.N. 1990. Local intra- and interlaminar connections in mouse barrel cortex. J. Comp. Neurol. 291:23l–255

    Article  Google Scholar 

  • Cohen L.B., Salzberg B.M. 1978. Optical measurement of membrane potential. Rev. Physiol. Biochem. Pharmacol. 83:35–88

    CAS  PubMed  Google Scholar 

  • Cohen L.B., Salzberg B.M., Grinvald A. 1978. Optical methods for monitoring neuron activity. Annu. Rev. Neurosci. 1:171–182

    Article  CAS  PubMed  Google Scholar 

  • Contreras D., Durmuller N., Steriade M. 1997. Absence of a prevalent laminar distribution of IPSPs in association cortical neurons of cat. J. Neurophysiol. 78:2742–2753

    CAS  PubMed  Google Scholar 

  • Contreras D., Llinas R. 2001. Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency. J. Neurosci. 21:9403–9413

    CAS  PubMed  Google Scholar 

  • Contreras D., Steriade M. 1995. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J. Neurosci. 15:604–622

    CAS  PubMed  Google Scholar 

  • Creutzfeldt O.D., Watanabe S., Lux H.D. 1966. Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. Electroencephalogr. Clin. Neurophysiol. 20:1–18

    Article  CAS  PubMed  Google Scholar 

  • Devor A., Dunn A.K., Andermann M.L., Ulbert I., Boas D.A., Dale A.M. 2003. Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39:353–359

    Article  CAS  PubMed  Google Scholar 

  • Erinjeri J.P., Woolsey T.A. 2002. Spatial integration of vascular changes with neural activity in mouse cortex. J. Cereb. Blood Flow Metab. 22:353–360

    Article  PubMed  Google Scholar 

  • Gil Z., Connors B.W., Amitai Y. 1997. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19:679–686

    Article  CAS  PubMed  Google Scholar 

  • Gil Z., Connors B.W., Amitai Y. 1999. Efficacy of thalamocortical and intracortical synaptic connections: quanta, innervation, and reliability. Neuron 23:385–397

    Article  CAS  PubMed  Google Scholar 

  • Goldreich D., Peterson B.E., Merzenich M.M. 1998. Optical imaging and electrophysiology of rat barrel cortex. II. Responses to paired-vibrissa deflections. Cereb. Cortex 8:184–192

    Article  CAS  PubMed  Google Scholar 

  • Grinvald A., Lieke E.E., Frostig R.D., Hildesheim R. 1994. Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14:2545–2568

    CAS  PubMed  Google Scholar 

  • Haupt S.S. 2000. Optical recording of spatiotemporal activation of rat somatosensory and visual cortex in vitro. Neurosci. Lett. 287:29–32

    Article  CAS  PubMed  Google Scholar 

  • Kleinfeld D., Delaney K.R. 1996. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J. Comp. Neurol. 375:89–108

    Article  CAS  PubMed  Google Scholar 

  • Konnerth A., Obaid A.L., Salzberg B.M. 1987. Optical recording of electrical activity from parallel fibres and other cell types in skate cerebellar slices in vitro. J. Physiol. 393:681–702

    CAS  PubMed  Google Scholar 

  • Laaris, N., Carlson, G.C., Keller, A. 2000. Thalamic -evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neuosci 20:1529–37

    CAS  Google Scholar 

  • Laaris, N., Keller, A. 2002. Functional independence of layer IV barrels. J Neurophysiol 87:1028–1034

    PubMed  Google Scholar 

  • Masino S.A., Kwon M.C., Dory Y., Frostig R.D. 1993. Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc. Natl. Acad. Sci. USA 90:9998–10002

    CAS  PubMed  Google Scholar 

  • Morin D., Steriade M. 1981. Development from primary to augmenting responses in the somatosensory system. Brain Res. 205:49–66

    Article  CAS  PubMed  Google Scholar 

  • Obaid A.L., Loew L.M., Wuskell J.P., Salzberg B.M. 2004. Novel naphthylstyryl-pyridium potentiometric dyes offer advantages for neural network analysis. J. Neurosci. Methods 134:179–190

    Article  CAS  PubMed  Google Scholar 

  • Petersen C.C., Grinvald A., Sakmann B. 2003a. Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J. Neurosci. 23:1298–1309

    CAS  Google Scholar 

  • Petersen C.C., Hahn T.T., Mehta M., Grinvald A., Sakmann B. 2003b. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl. Acad. Sci. USA 100:13638–13643

    Article  CAS  Google Scholar 

  • Salzberg B.M. 1989. Optical recording of voltage changes in nerve terminals and in fine neuronal processes. Annu. Rev. Physiol. 51:507–526

    Article  CAS  PubMed  Google Scholar 

  • Salzberg B.M., Obaid A.L., Senseman D.M., Gainer H. 1983. Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature 306:36–40

    Article  CAS  PubMed  Google Scholar 

  • Shoham D., Glaser D.E., Arieli A., Kenet T., Wijnbergen C., Toledo Y., Hildesheim R., Grinvald A. 1999. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24:791–802

    Article  CAS  PubMed  Google Scholar 

  • Song, W.J., Kawaguchi, H., Totoki, S., Inoue, Y., Katura, T., Maeda, S., Inagaki, S., Shirasawa, H., Nishimura, M. 2005. Cortical intrinsic circuits can support activity propagation through an isofrequency strip of the guinea pig primary auditory cortex. Cereb. Cortex 10.1093/cercor/bhj018

  • Timofeev I., Contreras D., Steriade M. 1996. Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. J. Physiol. 494:265–278

    CAS  PubMed  Google Scholar 

  • Wong-Riley M. 1979. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28

    Article  CAS  PubMed  Google Scholar 

  • Woolsey T.A., Van der Loos H. 1970. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17:205–242

    Article  CAS  PubMed  Google Scholar 

  • Yuste R., Tank D.W., Kleinfeld D. 1997. Functional study of the rat cortical microcircuitry with voltage-sensitive dye imaging of neocortical slices. Cereb. Cortex 7:546–558

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Sponsored by The Human Frontier Science Program Organization and the David and Lucille Packard Foundation. The authors are grateful to Esther Garcia de Yebenes for histology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Contreras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Civillico, E., Contreras, D. Comparison of Responses to Electrical Stimulation and Whisker Deflection Using Two Different Voltage-sensitive Dyes in Mouse Barrel Cortex in Vivo. J Membrane Biol 208, 171–182 (2005). https://doi.org/10.1007/s00232-005-0828-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0828-6

Keywords

Navigation