Skip to main content

Advertisement

Log in

Possible Involvement of Different Connexin43 Domains in Plasma Membrane Permeabilization Induced by Ischemia-Reperfusion

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In vitro and in vivo studies support the involvement of connexin 43-based cell-cell channels and hemichannels in cell death propagation induced by ischemia-reperfusion. In this context, open connexin hemichannels in the plasma membrane have been proposed to act as accelerators of cell death. Progress on the mechanisms underlying the cell permeabilization induced by ischemia-reperfusion reveals the involvement of several factors leading to an augmented open probability and increased number of hemichannels on the cell surface. While open probability can be increased by a reduction in extracellular concentration of divalent cations and changes in covalent modifications of connexin 43 (oxidation and phosphorylation), increase in number of hemichannels requires an elevation of the intracellular free Ca2+ concentration. Reversal of connexin 43 redox changes and membrane permeabilization can be induced by intracellular, but not extracellular, reducing agents, suggesting a cytoplasmic localization of the redox sensor(s). In agreement, hemichannels formed by connexin 45, which lacks cytoplasmic cysteines, or by connexin 43 with its C-terminal domain truncated to remove its cysteines are insensitive to reducing agents. Although further studies are required for a precise localization of the redox sensor of connexin 43 hemichannels, modulation of the redox potential is proposed as a target for the design of pharmacological tools to reduce cell death induced by ischemia-reperfusion in connexin 43-expressing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrams CK, Bennett MV, Verselis VK, Bargiello TA (2002) Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease. Proc Natl Acad Sci USA 99:3980–3984

    PubMed  CAS  Google Scholar 

  • Adibhatla RM, Hatcher JF, Dempsey RJ (2006) Lipids and lipidomics in brain injury and diseases. AAPS J 8:E314–E321

    PubMed  Google Scholar 

  • Ahmad AS, Saleem S, Ahmad M, Dore S (2006) Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 89:265–270

    PubMed  CAS  Google Scholar 

  • Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA 99:9840–9845

    PubMed  CAS  Google Scholar 

  • Bader P, Weingart R (2004) Conductive and kinetic properties of connexin45 hemichannels expressed in transfected HeLa cells. J Membr Biol 199:143–154

    PubMed  CAS  Google Scholar 

  • Bahima L, Aleu J, Elias M, Martin-Satue M, Muhaisen A, Blasi J, Marsal J, Solsona C (2006) Endogenous hemichannels play a role in the release of ATP from Xenopus oocytes. J Cell Physiol 206:95–102

    PubMed  CAS  Google Scholar 

  • Bano D, Nicotera P (2007) Ca2+ signals and neuronal death in brain ischemia. Stroke 38:674–676

    PubMed  CAS  Google Scholar 

  • Bao L, Locovei S, Dahl G (2004a) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    Google Scholar 

  • Bao L, Sachs F, Dahl G (2004b) Connexins are mechanosensitive. Am J Physiol 287:C1389–C1395

    Google Scholar 

  • Bao X, Altenberg GA, Reuss L (2004a) Mechanism of regulation of the gap junction protein connexin 43 by protein kinase C-mediated phosphorylation. Am J Physiol 286:C647–C654

    Google Scholar 

  • Bao X, Chen Y, Reuss L, Altenberg GA (2004b) Functional expression in Xenopus oocytes of gap-junctional hemichannels formed by a cysteine-less connexin 43. J Biol Chem 279:9689–9692

    Google Scholar 

  • Bao X, Lee SC, Reuss L, Altenberg GA (2007) Change in permeant size selectivity by phosphorylation of connexin 43 gap-junctional hemichannels by PKC. Proc Natl Acad Sci USA 104:4919–4924

    PubMed  CAS  Google Scholar 

  • Bao X, Reuss L, Altenberg GA (2004c) Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase C-mediated phosphorylation of serine 368. J Biol Chem 279:20058–20066

    Google Scholar 

  • Barbe MT, Monyer H, Bruzzone R (2006) Cell-cell communication beyond connexins: the pannexin channels. Physiology (Bethesda) 21:103–114

    CAS  Google Scholar 

  • Basilio D, Sáez JC, Bukauskas FF, Bennett MVL (2004) pH gating of Cx43-GFP hemichannels [abstract]. Mol Biol Cell 1708

  • Beahm DL, Hall JE (2002) Hemichannel and junctional properties of connexin 50. Biophys J 82:2016–2031

    PubMed  CAS  Google Scholar 

  • Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662

    PubMed  CAS  Google Scholar 

  • Bennett MV, Contreras JE, Bukauskas FF, Sáez JC (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26:610–617

    PubMed  CAS  Google Scholar 

  • Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Di Lisa F, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244

    PubMed  CAS  Google Scholar 

  • Borges CR, Geddes T, Watson JT, Kuhn DM (2002) Dopamine biosynthesis is regulated by S-glutathionylation. Potential mechanism of tyrosine hydroxylast inhibition during oxidative stress. J Biol Chem 277:48295–48302

    PubMed  CAS  Google Scholar 

  • Braet K, Aspeslagh S, Vandamme W, Willecke K, Martin PE, Evans WH, Leybaert L (2003a) Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells. J Cell Physiol 197:205–213

    PubMed  CAS  Google Scholar 

  • Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L (2003b) Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48

    PubMed  CAS  Google Scholar 

  • Broillet MC (1999) S-Nitrosylation of proteins. Cell Mol Life Sci 55:1036–1042

    PubMed  CAS  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol 287:C817–C833

    CAS  Google Scholar 

  • Bruno A, Biller J, Adams HP Jr, Clarke WR, Woolson RF, Williams LS, Hansen MD (1999) Acute blood glucose level and outcome from ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) investigators. Neurology 52:280–284

    PubMed  CAS  Google Scholar 

  • Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    PubMed  CAS  Google Scholar 

  • Bruzzone R, Dermietzel R (2006) Structure and function of gap junctions in the developing brain. Cell Tissue Res 326:239–248

    PubMed  CAS  Google Scholar 

  • Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649

    PubMed  CAS  Google Scholar 

  • Bruzzone S, Guida L, Zocchi E, Franco L, De Flora A (2001) Connexin 43 hemichannels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J 15:10–12

    PubMed  CAS  Google Scholar 

  • Bukauskas FF, Kreuzberg MM, Rackauskas M, Bukauskiene A, Bennett MV, Verselis VK, Willecke K (2006) Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. Proc Natl Acad Sci USA 103:9726–9731

    PubMed  CAS  Google Scholar 

  • Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC (2001) Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 32:2426–2432

    PubMed  CAS  Google Scholar 

  • Cheng S, Shakespeare T, Mui R, White TW, Valdimarsson G (2004) Connexin 48.5 is required for normal cardiovascular function and lens development in zebrafish embryos. J Biol Chem 279:36993–37003

    PubMed  CAS  Google Scholar 

  • Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106

    PubMed  CAS  Google Scholar 

  • Contreras JE, Sáez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393

    PubMed  CAS  Google Scholar 

  • Contreras JE, Sánchez HA, Eugenín EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Sáez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500

    PubMed  CAS  Google Scholar 

  • Contreras JE, Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC (2004) Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev 47:290–303

    PubMed  CAS  Google Scholar 

  • Cooper CD, Lampe PD (2002) Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem 277:44962–44968

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, Liu Y, Nedergaard M (1998) Astrocytic gap junctions remain open during ischemic conditions. J Neurosci 18:2520–2537

    PubMed  CAS  Google Scholar 

  • DeVries SH, Schwartz EA (1992) Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J Physiol 445:201–230

    PubMed  CAS  Google Scholar 

  • De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 25:34–44

    PubMed  Google Scholar 

  • De Vuyst E, Decrock E, De Bock M, Yamasaki H, Naus CC, Evans WH, Leybaert L (2007) Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 18:34–46

    PubMed  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    PubMed  CAS  Google Scholar 

  • Ebihara L (1996) Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys J 71:742–748

    PubMed  CAS  Google Scholar 

  • Ebihara L, Berthoud VM, Beyer EC (1995) Distinct behavior of connexin56 and connexin46 gap junctional channels can be predicted from the behavior of their hemi-gap-junctional channels. Biophys J 68:1796–1803

    PubMed  CAS  Google Scholar 

  • Ebihara L, Liu X, Pal JD (2003) Effect of external magnesium and calcium on human connexin46 hemichannels. Biophys J 84:277–286

    PubMed  CAS  Google Scholar 

  • Ebihara L, Steiner E (1993) Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol 102:59–74

    PubMed  CAS  Google Scholar 

  • Elahi MM, Matata BM (2006) Free radicals in blood: evolving concepts in the mechanism of ischemic heart disease. Arch Biochem Biophys 450:78–88

    PubMed  CAS  Google Scholar 

  • Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DD (2002) Inhibition of gap junction hemichannels by chloride channel blockers. J Membr Biol 185:93–102

    PubMed  CAS  Google Scholar 

  • Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G (2004) Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet 13:1703–1714

    PubMed  CAS  Google Scholar 

  • Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14

    PubMed  CAS  Google Scholar 

  • Fahrenfort I, Sjoerdsma T, Ripps H, Kamermans M (2004) Cobalt ions inhibit negative feedback in the outer retina by blocking hemichannels on horizontal cells. Vis Neurosci 21:501–511

    PubMed  CAS  Google Scholar 

  • Falk MM, Kumar NM, Gilula NB (1994) Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins. J Cell Biol 127:343–355

    PubMed  CAS  Google Scholar 

  • Ford DA, Hazen SL, Saffitz JE, Gross RW (1991) The rapid and reversible activation of a calcium-independent plasmalogen-selective phospholipase A2 during myocardial ischemia. J Clin Invest 88:331–335

    Article  PubMed  CAS  Google Scholar 

  • Francis D, Stergiopoulos K, Ek-Vitorin JF, Cao FL, Taffet SM, Delmar M (1999) Connexin diversity and gap junction regulation by pHi. Dev Genet 24:123–136

    PubMed  CAS  Google Scholar 

  • Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    PubMed  CAS  Google Scholar 

  • Gerido DA, Derosa AM, Richard G, White TW (2007) Aberrant hemichannel properties of Cx26 mutations causing skin disease and deafness. Am J Physiol 293:C337–C345

    CAS  Google Scholar 

  • Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    PubMed  CAS  Google Scholar 

  • Globus MY, Prado R, Busto R (1995) Ischemia-induced changes in extracellular levels of striatal cyclic GMP: role of nitric oxide. Neuroreport 6:1909–1912

    Article  PubMed  CAS  Google Scholar 

  • Gomes P, Srinivas SP, Van Driessche W, Vereecke J, Himpens B (2005) ATP release through connexin hemichannels in corneal endothelial cells. Invest Ophthalmol Vis Sci 46:1208–1218

    PubMed  Google Scholar 

  • Gómez-Hernández JM, de Miguel M, Larrosa B, González D, Barrio LC (2003) Molecular basis of calcium regulation in connexin-32 hemichannels. Proc Natl Acad Sci USA 100:16030–16035

    PubMed  Google Scholar 

  • González D, Gómez-Hernández JM, Barrio LC (2006) Species specificity of mammalian connexin-26 to form open voltage-gated hemichannels. FASEB J 20:2329–2338

    PubMed  Google Scholar 

  • Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294

    PubMed  CAS  Google Scholar 

  • Granger DN, Korthuis RJ (1995) Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 57:311–332

    PubMed  CAS  Google Scholar 

  • Gupta VK, Berthoud VM, Atal N, Jarillo JA, Barrio LC, Beyer EC (1994) Bovine connexin44, a lens gap junction protein: molecular cloning, immunologic characterization, and functional expression. Invest Ophthalmol Vis Sci 35:3747–3758

    PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    PubMed  CAS  Google Scholar 

  • Hofer A, Dermietzel R (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24:141–154

    PubMed  CAS  Google Scholar 

  • Huang Y, Grinspan JB, Abrams CK, Scherer SS (2007) Pannexin1 is expressed by neurons and glia but does not form functional gap junctions. Glia 55:46–56

    PubMed  Google Scholar 

  • Jedamzik B, Marten I, Ngezahayo A, Ernst A, Kolb HA (2000) Regulation of lens rCx46-formed hemichannels by activation of protein kinase C, external Ca2+ and protons. J Membr Biol 173:39–46

    PubMed  CAS  Google Scholar 

  • Jiang JX, Gu S (2005) Gap junction- and hemichannel-independent actions of connexins. Biochim Biophys Acta 1711:208–214

    PubMed  CAS  Google Scholar 

  • John S, Cesario D, Weiss JN (2003) Gap junctional hemichannels in the heart. Acta Physiol Scand 179:23–31

    PubMed  CAS  Google Scholar 

  • John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240

    PubMed  CAS  Google Scholar 

  • Kader A, Frazzini VI, Solomon RA, Trifiletti RR (1993) Nitric oxide production during focal cerebral ischemia in rats. Stroke 24:1709–1716

    PubMed  CAS  Google Scholar 

  • Kanemitsu MY, Jiang W, Eckhart W (1998) Cdc2-mediated phosphorylation of the gap junction protein, connexin43, during mitosis. Cell Growth Differ 9:13–21

    PubMed  CAS  Google Scholar 

  • Kanter HL, Saffitz JE, Beyer EC (1992) Cardiac myocytes express multiple gap junction proteins. Circ Res 70:438–444

    PubMed  CAS  Google Scholar 

  • Katz AM, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48:1–16

    PubMed  CAS  Google Scholar 

  • Kim DY, Kam Y, Koo SK, Joe CO (1999) Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. J Biol Chem 274:5581–5587

    PubMed  CAS  Google Scholar 

  • Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872

    PubMed  CAS  Google Scholar 

  • Lampe PD, Lau AF (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36:1171–1186

    PubMed  CAS  Google Scholar 

  • Li F, Sugishita K, Su Z, Ueda I, Barry WH (2001) Activation of connexin-43 hemichannels can elevate [Ca2+]i and [Na+]i in rabbit ventricular myocytes during metabolic inhibition. J Mol Cell Cardiol 33:2145–2155

    PubMed  CAS  Google Scholar 

  • Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG (1996) Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 134:1019–1030

    PubMed  CAS  Google Scholar 

  • Li WE, Nagy JI (2000) Connexin43 phosphorylation state and intercellular communication in cultured astrocytes following hypoxia and protein phosphatase inhibition. Eur J Neurosci 12:2644–2650

    PubMed  CAS  Google Scholar 

  • Liang GS, de Miguel M, Gomez-Hernandez JM, Glass JD, Scherer SS, Mintz M, Barrio LC, Fischbeck KH (2005) Severe neuropathy with leaky connexin32 hemichannels. Ann Neurol 57:749–754

    PubMed  CAS  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  • Liu TF, Johnson RG (1999) Effects of TPA on dye transfer and dye leakage in fibroblasts transfected with a connexin 43 mutation at ser368. Methods Find Exp Clin Pharmacol 21:387–390

    PubMed  CAS  Google Scholar 

  • Locovei S, Bao L, Dahl G (2006a) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 103:7655–7659

    Google Scholar 

  • Locovei S, Wang J, Dahl G (2006b) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244

    Google Scholar 

  • Malchow RP, Qian H, Ripps H (1993) Evidence for hemi-gap junctional channels in isolated horizontal cells of the skate retina. J Neurosci Res 35:237–245

    PubMed  CAS  Google Scholar 

  • Malchow RP, Qian H, Ripps H (1994) A novel action of quinine and quinidine on the membrane conductance of neurons from the vertebrate retina. J Gen Physiol 104:1039–1055

    PubMed  CAS  Google Scholar 

  • Mancuso P, Canetti C, Gottschalk A, Tithof PK, Peters-Golden M (2004) Leptin augments alveolar macrophage leukotriene synthesis by increasing phospholipase activity and enhancing group IVC iPLA2 (cPLA2gamma) protein expression. Am J Physiol 287:L497–L502

    CAS  Google Scholar 

  • Martínez AD, Sáez JC (2000) Regulation of astrocyte gap junctions by hypoxia-reoxygenation. Brain Res Brain Res Rev 32:250–258

    PubMed  Google Scholar 

  • Mergenthaler P, Dirnagl U, Meisel A (2004) Pathophysiology of stroke: lessons from animal models. Metab Brain Dis 19:151–167

    PubMed  CAS  Google Scholar 

  • Mottola A, Antoniotti S, Lovisolo D, Munaron L (2005) Regulation of noncapacitative calcium entry by arachidonic acid and nitric oxide in endothelial cells. FASEB J 19:2075–2077

    PubMed  CAS  Google Scholar 

  • Muir KW (2002) Magnesium in stroke treatment. Postgrad Med J 78:641–645

    PubMed  CAS  Google Scholar 

  • Munaron L (2002) Calcium signalling and control of cell proliferation by tyrosine kinase receptors. Int J Mol Med 10:671–676

    PubMed  CAS  Google Scholar 

  • Muranyi M, Ding C, He Q, Lin Y, Li PA (2006) Streptozotocin-induced diabetes causes astrocyte death after ischemia and reperfusion injury. Diabetes 55:349–355

    PubMed  CAS  Google Scholar 

  • Musil LS, Goodenough DA (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74:1065–1077

    PubMed  CAS  Google Scholar 

  • Nakase T, Sohl G, Theis M, Willecke K, Naus CC (2004) Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am J Pathol 164:2067–2075

    PubMed  CAS  Google Scholar 

  • Ngezahayo A, Zeilinger C, Todt II, Marten II, Kolb H (1998) Inactivation of expressed and conducting rCx46 hemichannels by phosphorylation. Pfluegers Arch 436:627–629

    CAS  Google Scholar 

  • Nieminen AL (2003) Apoptosis and necrosis in health and disease: role of mitochondria. Int Rev Cytol 224:29–55

    PubMed  CAS  Google Scholar 

  • Ohta K, Graf R, Rosner G, Heiss WD (1997) Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production. J Cereb Blood Flow Metab 17:1170–1181

    PubMed  CAS  Google Scholar 

  • Panchin YV (2005) Evolution of gap junction proteins–the pannexin alternative. J Exp Biol 208:1415–1419

    PubMed  CAS  Google Scholar 

  • Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089

    PubMed  CAS  Google Scholar 

  • Pearson RA, Dale N, Llaudet E, Mobbs P (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744

    PubMed  CAS  Google Scholar 

  • Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    PubMed  CAS  Google Scholar 

  • Pfahnl A, Dahl G (1999) Gating of Cx46 gap junction hemichannels by calcium and voltage. Pfluegers Arch 437:345–353

    CAS  Google Scholar 

  • Pottek M, Hoppenstedt W, Janssen-Bienhold U, Schultz K, Perlman I, Weiler R (2003) Contribution of connexin26 to electrical feedback inhibition in the turtle retina. J Comp Neurol 466:468–477

    PubMed  CAS  Google Scholar 

  • Puljung MC, Berthoud VM, Beyer EC, Hanck DA (2004) Polyvalent cations constitute the voltage gating particle in human connexin37 hemichannels. J Gen Physiol 124:587–603

    PubMed  CAS  Google Scholar 

  • Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148:1063–1074

    PubMed  CAS  Google Scholar 

  • Rana S, Dringen R (2007) Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 415:45–48

    PubMed  CAS  Google Scholar 

  • Retamal MA, Cortés CJ, Reuss L, Bennett MV, Sáez JC (2006) S-Nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci USA 103:4475–4480

    PubMed  CAS  Google Scholar 

  • Retamal MA, Schalper KA, Shoji KF, Bennett MV, Sáez JC (2007) Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci USA 104:8322–8327

    Google Scholar 

  • Richard G (2003) Connexin gene pathology. Clin Exp Dermatol 28:397–409

    PubMed  CAS  Google Scholar 

  • Ripps H, Qian H, Zakevicius J (2002) Pharmacological enhancement of hemi-gap-junctional currents in Xenopus oocytes. J Neurosci Methods 121:81–92

    PubMed  CAS  Google Scholar 

  • Ripps H, Qian H, Zakevicius J (2004) Properties of connexin26 hemichannels expressed in Xenopus oocytes. Cell Mol Neurobiol 24:647–665

    PubMed  CAS  Google Scholar 

  • Romanello M, D’Andrea P (2001) Dual mechanism of intercellular communication in HOBIT osteoblastic cells: a role for gap-junctional hemichannels. J Bone Miner Res 16:1465–1476

    PubMed  CAS  Google Scholar 

  • Romanello M, Veronesi V, D’Andrea P (2003) Mechanosensitivity and intercellular communication in HOBIT osteoblastic cells: a possible role for gap junction hemichannels. Biorheology 40:119–121

    PubMed  CAS  Google Scholar 

  • Sacco RL, Chong JY, Prabhakaran S, Elkind MS (2007) Experimental treatments for acute ischaemic stroke. Lancet 369:331–341

    PubMed  CAS  Google Scholar 

  • Sáez JC, Martínez AD, Brañes MC, González HE (1998) Regulation of gap junctions by protein phosphorylation. Braz J Med Biol Res 31:593–600

    PubMed  Google Scholar 

  • Sáez JC, Nairn AC, Czernik AJ, Fishman GI, Spray DC, Hertzberg EL (1997) Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J Mol Cell Cardiol 29:2131–2145

    PubMed  Google Scholar 

  • Sáez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224

    PubMed  Google Scholar 

  • Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560

    PubMed  CAS  Google Scholar 

  • Siesjo BK, Katsura K, Zhao Q, Folbergrova J, Pahlmark K, Siesjo P, Smith ML (1995) Mechanisms of secondary brain damage in global and focal ischemia: a speculative synthesis. J Neurotrauma 12:943–956

    PubMed  CAS  Google Scholar 

  • Srinivas M, Kronengold J, Bukauskas FF, Bargiello TA, Verselis VK (2005) Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys J 88:1725–1739

    PubMed  CAS  Google Scholar 

  • Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    PubMed  CAS  Google Scholar 

  • Stong BC, Chang Q, Ahmad S, Lin X (2006) A novel mechanism for connexin 26 mutation linked deafness: cell death caused by leaky gap junction hemichannels. Laryngoscope 116:2205–2210

    PubMed  CAS  Google Scholar 

  • Stout C, Charles A (2003) Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43:265–273

    PubMed  Google Scholar 

  • Stout C, Goodenough DA, Paul DL (2004) Connexins: functions without junctions. Curr Opin Cell Biol 16:507–512

    PubMed  CAS  Google Scholar 

  • Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    PubMed  CAS  Google Scholar 

  • Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281:21362–21368

    PubMed  CAS  Google Scholar 

  • Tao L, Harris AL (2007) 2-Aminoethoxydiphenyl borate directly inhibits channels composed of connexin26 and/or connexin32. Mol Pharmacol 71:570–579

    PubMed  CAS  Google Scholar 

  • Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927

    PubMed  CAS  Google Scholar 

  • Tong JJ, Ebihara L (2006) Structural determinants for the differences in voltage gating of chicken Cx56 and Cx45.6 gap-junctional hemichannels. Biophys J 91:2142–2154

    PubMed  CAS  Google Scholar 

  • Trexler EB, Bennett MV, Bargiello TA, Verselis VK (1996) Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci USA 93:5836–5841

    PubMed  CAS  Google Scholar 

  • Trexler EB, Bukauskas FF, Bennett MV, Bargiello TA, Verselis VK (1999) Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J Gen Physiol 113:721–742

    PubMed  CAS  Google Scholar 

  • Turner MS, Haywood GA, Andreka P, You L, Martin PE, Evans WH, Webster KA, Bishopric NH (2004) Reversible connexin 43 dephosphorylation during hypoxia and reoxygenation is linked to cellular ATP levels. Circ Res 95:726–733

    PubMed  CAS  Google Scholar 

  • Valiunas V (2002) Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol 119:147–164

    PubMed  CAS  Google Scholar 

  • Valiunas V, Mui R, McLachlan E, Valdimarsson G, Brink PR, White TW (2004) Biophysical characterization of zebrafish connexin35 hemichannels. Am J Physiol 287:C1596–C1604

    CAS  Google Scholar 

  • Valiunas V, Weingart R (2000) Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pfluegers Arch 440:366–379

    CAS  Google Scholar 

  • VanSlyke JK, Musil LS (2005) Cytosolic stress reduces degradation of connexin43 internalized from the cell surface and enhances gap junction formation and function. Mol Biol Cell 16:5247–5257

    PubMed  CAS  Google Scholar 

  • Vergara L, Bao X, Cooper M, Bello-Reuss E, Reuss L (2003) Gap-junctional hemichannels are activated by ATP depletion in human renal proximal tubule cells. J Membr Biol 196:173–184

    PubMed  CAS  Google Scholar 

  • Wang W, Oliva C, Li G, Holmgren A, Lillig CH, Kirk KL (2005) Reversible silencing of CFTR chloride channels by glutathionylation. J Gen Physiol 125:127–141

    PubMed  CAS  Google Scholar 

  • Warn-Cramer BJ, Cottrell GT, Burt JM, Lau AF (1998) Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J Biol Chem 273:9188–9196

    PubMed  CAS  Google Scholar 

  • White TW, Deans MR, O’Brien J, Al-Ubaidi MR, Goodenough DA, Ripps H, Bruzzone R (1999) Functional characteristics of skate connexin35, a member of the gamma subfamily of connexins expressed in the vertebrate retina. Eur J Neurosci 11:1883–1890

    PubMed  CAS  Google Scholar 

  • White TW, Paul DL (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 61:283–310

    PubMed  CAS  Google Scholar 

  • Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR (2006) Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 12:950–954

    PubMed  CAS  Google Scholar 

  • Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Ochalski A, Hertzberg EL, Nagy JI (1990) LM and EM immunolocalization of the gap junctional protein connexin 43 in rat brain. Brain Res 508:313–319

    PubMed  CAS  Google Scholar 

  • Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  • Yu J, Bippes CA, Hand GM, Muller DJ, Sosinsky GE (2007) Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J Biol Chem 282:8895–8904

    PubMed  CAS  Google Scholar 

  • Zampighi GA, Loo DD, Kreman M, Eskandari S, Wright EM (1999) Functional and morphological correlates of connexin50 expressed in Xenopus laevis oocytes. J Gen Physiol 113:507–524

    PubMed  CAS  Google Scholar 

  • Zhang DQ, McMahon DG (2001) Gating of retinal horizontal cell hemi gap junction channels by voltage, Ca2+, and retinoic acid. Mol Vis 7:247–252

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Chopp M, Bailey F, Malinski T (1995) Nitric oxide changes in the rat brain after transient middle cerebral artery occlusion. J Neurol Sci 128:22–27

    PubMed  CAS  Google Scholar 

  • Zhao HB (2005) Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. Eur J Neurosci 21:1859–1868

    PubMed  Google Scholar 

  • Zipfel GJ, Lee JM, Choi DW (1999) Reducing calcium overload in the ischemic brain. N Engl J Med 341:1543–1544

    PubMed  CAS  Google Scholar 

  • Zoidl G, Bruzzone R, Weickert S, Kremer M, Zoidl C, Mitropoulou G, Srinivas M, Spray DC, Dermietzel R (2004) Molecular cloning and functional expression of zfCx52.6: a novel connexin with hemichannel-forming properties expressed in horizontal cells of the zebrafish retina. J Biol Chem 279:2913–2921

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially funded by Núcleo Milenio P04/030-F FONDECYT grants 1030945 and 1070591 (to J. C. S.) and by NIH grant NS 45287 (to M.V.L.B.). M. A. R. was postdoctoral fellow of the Núcleo Milenio (P04/030-F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Sáez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Retamal, M.A., Schalper, K.A., Shoji, K.F. et al. Possible Involvement of Different Connexin43 Domains in Plasma Membrane Permeabilization Induced by Ischemia-Reperfusion. J Membrane Biol 218, 49–63 (2007). https://doi.org/10.1007/s00232-007-9043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9043-y

Keywords

Navigation