Skip to main content
Log in

Na,K-ATPase Activity in Mouse Muscle is Regulated by AMPK and PGC-1α

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Na,K-ATPase activity, which is crucial for skeletal muscle function, undergoes acute and long-term regulation in response to muscle activity. The aim of the present study was to test the hypothesis that AMP kinase (AMPK) and the transcriptional coactivator PGC-1α are underlying factors in long-term regulation of Na,K-ATPase isoform (α,β and PLM) abundance and Na+ affinity. Repeated treatment of mice with the AMPK activator AICAR decreased total PLM protein content but increased PLM phosphorylation, whereas the number of α- and β-subunits remained unchanged. The K m for Na+ stimulation of Na,K-ATPase was reduced (higher affinity) after AICAR treatment. PLM abundance was increased in AMPK kinase-dead mice compared with control mice, but PLM phosphorylation and Na,K-ATPase Na+ affinity remained unchanged. Na,K-ATPase activity and subunit distribution were also measured in mice with different degrees of PGC-1α expression. Protein abundances of α1 and α2 were reduced in PGC-1α +/− and −/− mice, and the β12 ratio was increased with PGC-1α overexpression (TG mice). PLM protein abundance was decreased in TG mice, but phosphorylation status was unchanged. Na,K-ATPase V max was decreased in PCG-1α TG and KO mice. Experimentally in vitro induced phosphorylation of PLM increased Na,K-ATPase Na+ affinity, confirming that PLM phosphorylation is important for Na,K-ATPase function. In conclusion, both AMPK and PGC-1α regulate PLM abundance, AMPK regulates PLM phosphorylation and PGC-1α expression influences Na,K-ATPase α1 and α2 content and β12 isoform ratio. Phosphorylation of the Na,K-ATPase subunit PLM is an important regulatory mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benziane B, Chibalin AV (2008) Frontiers: skeletal muscle sodium pump regulation: a translocation paradigm. Am J Physiol Endocrinol Metab 295:E553–E558

    Article  PubMed  CAS  Google Scholar 

  • Bibert S, Roy S, Schaer D, Horisberger JD, Geering K (2008) Phosphorylation of phospholemman (FXYD1) by protein kinase A and C modulate distinct Na,K-ATPase isoenzymes. J Biol Chem 283:476–485

    Article  PubMed  CAS  Google Scholar 

  • Buchanan R, Nielsen OB, Clausen T (2002) Excitation- and β2-agonist-induced activation of the Na+-K+ pump in rat soleus muscle. J Physiol 545:229–240

    Article  PubMed  CAS  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151–160

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Bandyopadhyay G, Sajan MP, Kanoh Y, Standeart M, Farese RV Jr, Farese RV (2002) Activation of the ERK pathways and atypical protein kinase C isoforms in exercise- and aminoimidazole-4-carboxamide-1-beta-D-ribose (AICAR)-stimulated glucose transport. J Biol Chem 277:23554–23562

    Article  PubMed  CAS  Google Scholar 

  • Crambert G, Füzesi M, Garty Karlish S, Geering K (2002) Phospholemman (FXYD1) associates with Na,K-ATPase and regulate its transport properties. Proc Natl Acad Sci USA 99:11476–11481

    Article  PubMed  CAS  Google Scholar 

  • Dela F, Holten M, Juel C (2004) Effect of resistance training on Na, K pump and Na+/H+ exchange protein densities in muscle from control and patients with type 2 diabetes. Pflugers Arch 447:928–933

    Article  PubMed  CAS  Google Scholar 

  • Despa S, Bossuyt J, Han F, Ginsburg KS, Jia L-G, Kutchai H, Tucker AL, Bers DM (2005) Phospholemmen-phosphorylation mediates the β-adrenergic effects on Na/K pump function in cardiac myocytes. Circ Res 97:252–259

    Article  PubMed  CAS  Google Scholar 

  • Feschenko MS, Stevenson E, Sweadner KJ (2000) Interaction of protein kinase C and cAMP-dependent pathways in the phosphorylation at the Na,K-ATPase. J Biol Chem 275:34693–34700

    Article  PubMed  CAS  Google Scholar 

  • Galuska D, Kotova O, Barrès R, Chibalina D, Benziane B, Chibalin AV (2009) Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise. Am J Physiol Endocrinol Metab 297:E38–E49

    Article  PubMed  CAS  Google Scholar 

  • Gato M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I, Shimokawa T (2000) cDNA cloning and mRNA analysis of PGC-1α in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun 274:350–354

    Article  Google Scholar 

  • Jensen TE, Rose AJ, Jørgensen SB, Brandt N, Schjerling P, Wojtaszewski JF, Richter EA (2007) Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol Endocrinol Metab 292:E1308–E1317

    Article  PubMed  CAS  Google Scholar 

  • Jensen TE, Wojtascewski JFP, Richter EA (2009) AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient? Acta Physiol 196:155–174

    Article  CAS  Google Scholar 

  • Jørgensen SB, Treebak JT, Viollet B, Schjerling P, Vaulont S, Wojtaszewski JFP, Richter EA (2007) Role of AMPKα2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol Endocrinol Metab 292:E331–E339

    Article  PubMed  Google Scholar 

  • Juel C (2006) Training-induced changes in membrane transport proteins of human skeletal muscle. Eur J Appl Physiol 96:627–635

    Article  PubMed  Google Scholar 

  • Juel C (2009) Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity. Am J Physiol Regul Integr Comp Physiol 296:R125–R132

    Article  PubMed  CAS  Google Scholar 

  • Kristensen M, Juel C (2010) Na+, K+-ATPase Na+ affinity in rat skeletal muscle fiber types. J Membr Biol 234:35–45

    Article  PubMed  CAS  Google Scholar 

  • Kristensen M, Rasmussen MK, Juel C (2008) Na+-K+ pump location and translocation during muscle contraction in rat skeletal muscle. Pflugers Arch 456:979–989

    Article  PubMed  CAS  Google Scholar 

  • Leick L, Wojtascewski JFP, Johansen ST, Kiilerich K, Comes G, Hellsten Y, Hidalgo J, Pilegaard H (2008) PGC-1α is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab 294:E463–E474

    Article  PubMed  CAS  Google Scholar 

  • Leick L, Hellsten Y, Fentz J, Lyngby SS, Wojtaszewski JFP, Hidalgo J, Pilegaard H (2009) PGC-1α mediates exercise-induced skeletal muscle VEGF expression in mice. Am J Physiol Endocrinol Metab 297:E92–E103

    Article  PubMed  CAS  Google Scholar 

  • Lifshitz Y, Lindzen M, Garty H, Karlish SJD (2006) Functional interactions of phospholemman (PLM) (FXYD1) with the Na+, K+-ATPase. J Biol Chem 281:15790–15799

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Wu N, Tarr PT, Zhang C-Y, Wu Z, Boss O, Michael LF, Pulgserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibers. Nature 418:797–801

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavachi AM, Cinti S, Shulman GI, Lowell BB, Krainc D (2004) Defect in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    Article  PubMed  CAS  Google Scholar 

  • Olesen J, Kiilerich K, Pilegaard H (2010) PGC-1α-mediated adaptations in skeletal muscle. Pflugers Arch 460:153–162

    Article  PubMed  CAS  Google Scholar 

  • Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546:851–858

    Article  PubMed  CAS  Google Scholar 

  • Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I (2002) Effects of low-intensity prolonged exercise on PGC-1α mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296:350–354

    Article  PubMed  CAS  Google Scholar 

  • Vadasz I, Dada LA, Briva A, Trejo HE, Welch LC, Chen J, Toth PT, Lecuona E, Witters LA, Schumacher PT, Chandel NS, Seeger W, Sznajder JI (2008) AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rat and human cells by promoting Na,K-ATPase endocytosis. J Clin Invest 118:752–762

    PubMed  CAS  Google Scholar 

  • Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol Endocrinol Metab 270:E299–E304

    CAS  Google Scholar 

  • Winder WW, Taylor EB, Thomason DM (2006) Role of AMP-activated protein kinase in the molecular adaptations to endurance exercise. Med Sci Sports Exerc 38:1945–1949

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, NG Y-C (2007) Fiber specific differential phosphorylation of the α1-subunit of the Na+, K+-ATPase in rat skeletal muscle: the effect of aging. Mol Cell Biochem 303:231–237

    Article  PubMed  CAS  Google Scholar 

  • Zheng D, Perianayagam A, Lee DH, Brannan MD, Yang LE, Tellalian D, Chen P, Lemieux K, Marette A, Youn JH, McDonough AA (2008) AMPK activation with AICAR provokes an acute fall in plasma [K+]. Am J Physiol Cell Physiol 294:C126–C135

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Carlsberg Foundation. We thank Prof. B. Spiegelman for providing PGC-1α mice and M. J. Birnbaum for providing KD mice initially to start breeding in house. We also thank Joachim Fentz, Lotte Leick and Jonas T. Treebak for help handling animals and Helle Walas for skilled technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Juel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingwersen, M.S., Kristensen, M., Pilegaard, H. et al. Na,K-ATPase Activity in Mouse Muscle is Regulated by AMPK and PGC-1α. J Membrane Biol 242, 1–10 (2011). https://doi.org/10.1007/s00232-011-9365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9365-7

Keywords

Navigation