Skip to main content
Log in

Selection Conflicts, Gene Expression, and Codon Usage Trends in Yeast

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Synonymous codon usage in yeast appears to be influenced by natural selection on gene expression, as well as regional variation in compositional bias. Because of the large number of potential targets of selection (i.e., most of the codons in the genome) and presumed small selection coefficients, codon usage is an excellent model for studying factors that limit the effectiveness of selection. We use factor analysis to identify major trends in codon usage for 5836 genes in Saccharomyces cerevisiae. The primary factor is strongly correlated with gene expression, consistent with the model that a subset of codons allows for more efficient translation. The secondary factor is very strongly correlated with third codon position GC content and probably reflects regional variation in compositional bias. We find that preferred codon usage decreases in the face of three potential limitations on the effectiveness of selection: reduced recombination rate, increased gene length, and reduced intergenic spacing. All three patterns are consistent with the Hill–Robertson effect (reduced effectiveness of selection among linked targets). A reduction in gene expression in closely spaced genes may also reflect selection conflicts due to antagonistic pleiotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. MD Adams et al. (2000) ArticleTitleThe genome sequence of Drosophila melanogaster. Science 287 2185–2195 Occurrence Handle10.1126/science.287.5461.2185 Occurrence Handle10731132

    Article  PubMed  Google Scholar 

  2. H Akashi (1994) ArticleTitleSynonymous codon usage in Drosophila melanogaster. Natural selection and translational accuracy. Genetics 136 927–935 Occurrence Handle1:CAS:528:DyaK2MXpsFaq Occurrence Handle8005445

    CAS  PubMed  Google Scholar 

  3. H Akashi (1995) ArticleTitleInferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139 1067–1076 Occurrence Handle1:CAS:528:DyaK28XhsFWgtL0%3D Occurrence Handle7713409

    CAS  PubMed  Google Scholar 

  4. H Akashi SW Schaeffer (1997) ArticleTitleNatural selection and the frequency distributions of “silent” DNA polymorphism in Drosophila. Genetics 146 295–307 Occurrence Handle1:CAS:528:DyaK2sXmsVarsbg%3D Occurrence Handle9136019

    CAS  PubMed  Google Scholar 

  5. MA Antezana M Kreitman (1999) ArticleTitleThe nonrandom location of synonymous codons suggests that reading frame-independent forces have patterned codon preferences. J Mol Evol 49 36–43 Occurrence Handle1:CAS:528:DyaK1MXkt1Oktr8%3D Occurrence Handle10368432

    CAS  PubMed  Google Scholar 

  6. AC Bell AG West G Felsenfeld (2001) ArticleTitleInsulators and boundaries: Versatile regulatory elements in the eukaryotic genome. Science 291 447–450 Occurrence Handle10.1126/science.291.5503.447 Occurrence Handle1:CAS:528:DC%2BD3MXlslehsA%3D%3D Occurrence Handle11228144

    Article  CAS  PubMed  Google Scholar 

  7. JL Bennetzen BD Hall (1982) ArticleTitleCodon selection in yeast. J Biol Chem 257 3026–3031 Occurrence Handle1:CAS:528:DyaL38XitFWkt7w%3D Occurrence Handle7037777

    CAS  PubMed  Google Scholar 

  8. O Berg CG Kurland (1997) ArticleTitleGrowth rate-optimised tRNA abundance and codon usage. J Mol Biol 270 544–550 Occurrence Handle10.1006/jmbi.1997.1142 Occurrence Handle1:CAS:528:DyaK2sXltlSnsb8%3D Occurrence Handle9245585

    Article  CAS  PubMed  Google Scholar 

  9. G Bernardi (2000) ArticleTitleIsochores and the evolutionary genomics of vertebrates. Gene 241 3–17 Occurrence Handle10.1016/S0378-1119(99)00485-0 Occurrence Handle1:CAS:528:DyaK1MXotVGksrw%3D Occurrence Handle10607893

    Article  CAS  PubMed  Google Scholar 

  10. G Bernardi B Olofsson J Filipski M Zerial J Salinas G Cuny M Meunier-Rotival F Rodier (1985) ArticleTitleThe mosaic genome of warm-blooded vertebrates. Science 228 953–958

    Google Scholar 

  11. JA Birdsell (2002) ArticleTitleIntegrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol 19 1181–1197 Occurrence Handle1:CAS:528:DC%2BD38Xlt1aktb4%3D Occurrence Handle12082137

    CAS  PubMed  Google Scholar 

  12. A Coghlan KH Wolfe (2000) ArticleTitleRelationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16 1131–1145 Occurrence Handle1:CAS:528:DC%2BD3cXmvFSitbY%3D Occurrence Handle10953085

    CAS  PubMed  Google Scholar 

  13. JM Comeron M Kreitman (2002) ArticleTitlePopulation, evolutionary and genomic consequences of interference selection. Genetics 161 389–410 Occurrence Handle1:CAS:528:DC%2BD38XkslChu7o%3D Occurrence Handle12019253

    CAS  PubMed  Google Scholar 

  14. JM Comeron M Kreitman M Aguadé (1999) ArticleTitleNatural selection on synonymous sites is correlated with gene length and recombination rate in Drosophila. Genetics 151 239–249 Occurrence Handle1:CAS:528:DyaK1MXovVCgsA%3D%3D Occurrence Handle9872963

    CAS  PubMed  Google Scholar 

  15. JL DeRisi VR Iyer PO Brown (1997) ArticleTitleExploring the metabolic and genetic control of gene expression on a genomic scale. Science 278 680–686 Occurrence Handle1:CAS:528:DyaK2sXmvVynsrs%3D Occurrence Handle9381177

    CAS  PubMed  Google Scholar 

  16. L Duret D Mouchiroud (1999) ArticleTitleExpression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci USA 96 4482–4487 Occurrence Handle10.1073/pnas.96.8.4482 Occurrence Handle1:CAS:528:DyaK1MXjs1yls7Y%3D Occurrence Handle10200288

    Article  CAS  PubMed  Google Scholar 

  17. L Duret D Mouchiroud C Gautier (1995) ArticleTitleStatistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J Mol Evol 40 308–317 Occurrence Handle1:CAS:528:DyaK2MXksl2gsL4%3D Occurrence Handle7723057

    CAS  PubMed  Google Scholar 

  18. A Eyre-Walker (1993) ArticleTitleRecombination and mammalian genome evolution. Proc R Soc Lond B 252 237–243 Occurrence Handle1:CAS:528:DyaK2cXht1Khs7w%3D Occurrence Handle8394585

    CAS  PubMed  Google Scholar 

  19. G Farkas BA Leibovitch SG Elgin (2000) ArticleTitleChromatin organization and transcriptional control of gene expression in Drosophila. Gene 253 117–136 Occurrence Handle10.1016/S0378-1119(00)00240-7 Occurrence Handle1:CAS:528:DC%2BD3cXlsFSlt7w%3D Occurrence Handle10940549

    Article  CAS  PubMed  Google Scholar 

  20. J Felsenstein (1974) ArticleTitleThe evolutionary advantage of recombination. Genetics 78 737–756 Occurrence Handle1:STN:280:CSqD1MvhvVc%3D Occurrence Handle4448362

    CAS  PubMed  Google Scholar 

  21. SM Gasser R Paro F Stewart R Aasland (1998) ArticleTitleThe genetics of epigenetics. Cell Mol Life Sci 54 1–5 Occurrence Handle10.1007/s000180050120 Occurrence Handle1:CAS:528:DyaK1cXns1Cmuw%3D%3D Occurrence Handle9487382

    Article  CAS  PubMed  Google Scholar 

  22. JL Gerton J DeRisi R Shroff M Lichten PO Brown TD Petes (2000) ArticleTitleGlobal mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97 11383–11390 Occurrence Handle11027339

    PubMed  Google Scholar 

  23. JH Gillespie (2000) ArticleTitleGenetic drift in an infinite population. The pseudohitchhiking model. Genetics 155 909–919 Occurrence Handle1:STN:280:DC%2BD3cvislKrsQ%3D%3D Occurrence Handle10835409

    CAS  PubMed  Google Scholar 

  24. A Goffeau et al. (1996) ArticleTitleLife with 6000 genes. Science 274 563–567 Occurrence Handle10.1126/science.274.5287.546

    Article  Google Scholar 

  25. M Gouy C Gautier (1982) ArticleTitleCodon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10 7055–7074 Occurrence Handle1:CAS:528:DyaL3sXivVOquw%3D%3D Occurrence Handle6760125

    CAS  PubMed  Google Scholar 

  26. J Hey RM Kliman (2002) ArticleTitleInteractions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 160 595–608 Occurrence Handle1:CAS:528:DC%2BD38XitlWrs7w%3D Occurrence Handle11861564

    CAS  PubMed  Google Scholar 

  27. WG Hill A Robertson (1966) ArticleTitleThe effect of linkage on limits to artificial selection. Genet Res 8 269–294 Occurrence Handle1:STN:280:CCiB2cbotl0%3D Occurrence Handle5980116

    CAS  PubMed  Google Scholar 

  28. T Ikemura (1981) ArticleTitleCorrelation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translation system. J Mol Biol 151 389–409

    Google Scholar 

  29. T Ikemura (1985) ArticleTitleCodon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2 13–34 Occurrence Handle1:CAS:528:DyaL2MXhvFyksbk%3D Occurrence Handle3916708

    CAS  PubMed  Google Scholar 

  30. RM Kliman (1999) ArticleTitleRecent selection on synonymous codon usage in Drosophila. J Mol Evol 49 343–351 Occurrence Handle1:CAS:528:DyaK1MXmtlGksLc%3D Occurrence Handle10473775

    CAS  PubMed  Google Scholar 

  31. RM Kliman A Eyre-Walker (1998) ArticleTitlePatterns of base composition within the genes of Drosophila melanogaster. J Mol Evol 46 534–541 Occurrence Handle1:CAS:528:DyaK1cXislGku7Y%3D Occurrence Handle9545464

    CAS  PubMed  Google Scholar 

  32. RM Kliman J Hey (1993) ArticleTitleReduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol 10 1239–1258 Occurrence Handle1:CAS:528:DyaK2cXht1KktrY%3D Occurrence Handle8277853

    CAS  PubMed  Google Scholar 

  33. RM Kliman J Hey (1994) ArticleTitleThe effects of mutation and natural selection on codon bias in the genes of Drosophila. Genetics 137 1049–1056 Occurrence Handle1:CAS:528:DyaK2MXmslWmug%3D%3D Occurrence Handle7982559

    CAS  PubMed  Google Scholar 

  34. WH Li (1987) ArticleTitleModels of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. J Mol Evol 24 337–345 Occurrence Handle1:CAS:528:DyaL2sXktFyrurw%3D Occurrence Handle3110426

    CAS  PubMed  Google Scholar 

  35. G Marais G Piganeau (2002) ArticleTitleHill-Robertson interference is a minor determinant of variations in codon bias across Drosophila melanogaster and Caenorhabditis elegans genome. Mol Biol Evol 19 1399–1406 Occurrence Handle1:CAS:528:DC%2BD38XntVyhtrc%3D Occurrence Handle12200468

    CAS  PubMed  Google Scholar 

  36. G Marais D Mouchiroud L Duret (2001) ArticleTitleDoes recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci USA 98 5688–5692 Occurrence Handle10.1073/pnas.091427698 Occurrence Handle1:CAS:528:DC%2BD3MXjs1WnsLo%3D Occurrence Handle11320215

    Article  CAS  PubMed  Google Scholar 

  37. GAT McVean B Charlesworth (2000) ArticleTitleThe effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics 155 929–944 Occurrence Handle1:STN:280:DC%2BD3cvislKrtw%3D%3D Occurrence Handle10835411

    CAS  PubMed  Google Scholar 

  38. EN Moriyama JR Powell (1997) ArticleTitleCodon usage bias and tRNA abundance in Drosophila. J Mol Evol 45 514–523 Occurrence Handle1:CAS:528:DyaK2sXmvFSktbY%3D Occurrence Handle9342399

    CAS  PubMed  Google Scholar 

  39. EN Moriyama JR Powell (1998) ArticleTitleGene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae, and Escherichia coli. Nucleic Acids Res 26 3188–3193 Occurrence Handle10.1093/nar/26.13.3188 Occurrence Handle1:CAS:528:DyaK1cXks1Crs7w%3D Occurrence Handle9628917

    Article  CAS  PubMed  Google Scholar 

  40. T Ohta (1973) ArticleTitleSlightly deleterious mutant substitutions in evolution. Nature 246 96–98 Occurrence Handle4585855

    PubMed  Google Scholar 

  41. R Percudani A Pavesi S Ottonello (1997) ArticleTitleTransfer RNA gene redundancy and translation selection in Saccharomyces cerevisiae. J Mol Biol 268 322–330 Occurrence Handle10.1006/jmbi.1997.0942 Occurrence Handle1:CAS:528:DyaK2sXjsVamu7k%3D Occurrence Handle9159473

    Article  CAS  PubMed  Google Scholar 

  42. PM Sharp E Cowe (1991) ArticleTitleSynonymous codon usage in Saccharomyces cerevisiae. Yeast 7 657–678 Occurrence Handle1:CAS:528:DyaK3MXmsFWktr4%3D Occurrence Handle1776357

    CAS  PubMed  Google Scholar 

  43. PM Sharp KM Devine (1989) ArticleTitleCodon usage and gene expression level in Dictyostelium discoideum: Highly expressed genes do prefer optimal codons. Nucleic Acids Res 17 5029–5039 Occurrence Handle1:CAS:528:DyaL1MXlt1Ortrw%3D Occurrence Handle2762118

    CAS  PubMed  Google Scholar 

  44. PM Sharp WH Li (1987) ArticleTitleThe codon adaptation index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15 1281–1295 Occurrence Handle1:CAS:528:DyaL2sXhtlejtrc%3D Occurrence Handle3547335

    CAS  PubMed  Google Scholar 

  45. DC Shields PM Sharp DG Higgins F Wright (1988) ArticleTitle“Silent” sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol 5 704–716 Occurrence Handle1:CAS:528:DyaL1MXitVym Occurrence Handle3146682

    CAS  PubMed  Google Scholar 

  46. StatSoft Inc. (2001) STATISTICA (data analysis software system), version 6. http://www.statsoft.com

  47. M Stenico AT Lloyd PM Sharp (1994) ArticleTitleCodon usage in Caenorhabditis elegans: Delineation of translational selection and mutational biases. Nucleic Acids Res 22 2437–2446 Occurrence Handle1:CAS:528:DyaK2cXlsFSht7s%3D Occurrence Handle8041603

    CAS  PubMed  Google Scholar 

  48. F Wright (1990) ArticleTitleThe ‘effective number of codons' used in a gene. Gene 87 23–29

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant R15HG02456 to R.M.K. We thank G. Bernardi and two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Kliman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kliman, R.M., Irving, N. & Santiago, M. Selection Conflicts, Gene Expression, and Codon Usage Trends in Yeast . J Mol Evol 57, 98–109 (2003). https://doi.org/10.1007/s00239-003-2459-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2459-9

Keywords

Navigation