Skip to main content
Log in

Dating the Monocot–Dicot Divergence and the Origin of Core Eudicots Using Whole Chloroplast Genomes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We estimated the dates of the monocot–dicot split and the origin of core eudicots using a large chloroplast (cp) genomic dataset. Sixty-one protein-coding genes common to the 12 completely sequenced cp genomes of land plants were concatenated and analyzed. Three reliable split events were used as calibration points and for cross references. Both the method based on the assumption of a constant rate and the Li–Tanimura unequal-rate method were used to estimate divergence times. The phylogenetic analyses indicated that nonsynonymous substitution rates of cp genomes are unequal among tracheophyte lineages. For this reason, the constant-rate method gave overestimates of the monocot–dicot divergence and the age of core eudicots, especially when fast-evolving monocots were included in the analysis. In contrast, the Li–Tanimura method gave estimates consistent with the known evolutionary sequence of seed plant lineages and with known fossil records. Combining estimates calibrated by two known fossil nodes and the Li–Tanimura method, we propose that monocots branched off from dicots 140–150 Myr ago (late Jurassic–early Cretaceous), at least 50 Myr younger than previous estimates based on the molecular clock hypothesis, and that the core eudicots diverged 100–115 Myr ago (Albian–Aptian of the Cretaceous). These estimates indicate that both the monocot–dicot divergence and the core eudicot’s age are older than their respective fossil records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. InstitutionalAuthorNameAPG (Angiosperm Phylogeny Group) (1998) ArticleTitleAn ordinal classification for the families of flowering plants. Annal Mo Bot Gard 85 531–533

    Google Scholar 

  2. JF Basinger DL Dilcher (1984) ArticleTitleAncient bisexual flowers. Science 224 511–513

    Google Scholar 

  3. J Bousquet SH Strauss AH Doerksen RA Price (1992) ArticleTitleExtensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc Natl Acad Sci USA 89 7844–7848 Occurrence Handle1:CAS:528:DyaK3sXksVahurg%3D Occurrence Handle1502205

    CAS  PubMed  Google Scholar 

  4. LM Bowe G Coat CW dePamphilis (2000) ArticleTitlePhylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97 4092–4097 Occurrence Handle10.1073/pnas.97.8.4092 Occurrence Handle1:CAS:528:DC%2BD3cXislSgtb8%3D Occurrence Handle10760278

    Article  CAS  PubMed  Google Scholar 

  5. R Brandl W Mann M Sprintzl (1992) ArticleTitleEstimation of the monocot–dicot age through t-RNA sequences from the chloroplast. Proc R Soc Lond B 249 13–17

    Google Scholar 

  6. K Bremer (2000) ArticleTitleEarly Cretaceous lineages of monocots flowering plants. Proc Natl Acad Sci USA 97 4707–4711 Occurrence Handle10.1073/pnas.080421597 Occurrence Handle1:CAS:528:DC%2BD3cXivFKjtLs%3D Occurrence Handle10759567

    Article  CAS  PubMed  Google Scholar 

  7. MW Chase et al. (1993) ArticleTitlePhylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Annal Ma Bot Gard 80 528–580

    Google Scholar 

  8. MW Chase (2000) Higher-level systematics of the monocotyledons: An assessment of current knowledge and a new classification. KL Wilson DA Morrison (Eds) Monocots: Systematics and evolution. Commonwealth Scientific and Industrial Research Organization Collingwood, Australia 3–16

    Google Scholar 

  9. SM Chaw HA Zharkikh HM Sung TC Lau WH Li et al. (1997) ArticleTitleMolecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol Biol Evol 14 56–68 Occurrence Handle1:CAS:528:DyaK2sXjvFKrtw%3D%3D Occurrence Handle9000754

    CAS  PubMed  Google Scholar 

  10. SM Chaw CL Parkinson Y Cheng TM Vincent JD Palmer (2000) ArticleTitleSeed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97 4086–4091 Occurrence Handle1:CAS:528:DC%2BD3cXislSgtb4%3D Occurrence Handle10760277

    CAS  PubMed  Google Scholar 

  11. MT Clegg BS Gaut GH Learn . Morton (1994) ArticleTitleRates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA 91 6795–6801 Occurrence Handle1:CAS:528:DyaK2cXlslehsb4%3D Occurrence Handle8041699

    CAS  PubMed  Google Scholar 

  12. PR Crane (1988) Major clades and relationships in “higher” gymnosperms. CB Beck (Eds) Origin and evolution of gymnosperms. Columbia University Press New York, 218–272

    Google Scholar 

  13. WL Crepet GD Feldman (1991) ArticleTitleThe earliest remains of grasses in the fossil record. Am J Bot 78 1010–1014

    Google Scholar 

  14. A Cronquist (1988) The evolution and classification of fowering plants, 2nd ed. New York Botanical Garden Bronx, NY

    Google Scholar 

  15. C Darwin F Darwin AC Seward (1903) More letters from Charles Darwin. D. Appleton New York

    Google Scholar 

  16. T Delevoryas RC Hope (1973) ArticleTitleFertile coniferophyte remains from the Late Triassic Deep River Basin, North Carolina. Am J Bot 60 810–818

    Google Scholar 

  17. JA Doyle (1992) ArticleTitleRevised palynological correlations of the lower Potomac Group (USA) and the Cocobeach sequence of Gabon (Barremian-Aptian). Cretaceous Res 13 337–349

    Google Scholar 

  18. JA Doyle (1998) ArticleTitleMolecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Mol Phylogenet Evol 9 448–462 Occurrence Handle10.1006/mpev.1998.0506 Occurrence Handle1:STN:280:DyaK1czjsVGlug%3D%3D Occurrence Handle9667993

    Article  CAS  PubMed  Google Scholar 

  19. JA Doyle MJ Donoghue (1987) The origin of angiosperms: a cladistic approach. EM Friis WG Chaloner PR Crane (Eds) The origins of angiosperms and their biological consequences. Cambridge University Press Cambridge 17–49

    Google Scholar 

  20. JL Gallois P Achard G Green R Mache (2001) ArticleTitleThe Arabidopsis chloroplast ribosomal protein L21 is encoded by a nuclear gene of mitochondrial origin. Gene 274 179–185 Occurrence Handle10.1016/S0378-1119(01)00613-8 Occurrence Handle1:CAS:528:DC%2BD3MXms1Grsbo%3D Occurrence Handle11675010

    Article  CAS  PubMed  Google Scholar 

  21. JS Gantt SL Baldauf PJ Caline NF Weeden JD Palmer (1991) ArticleTitleTransfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10 3073–4078 Occurrence Handle1:CAS:528:DyaK38Xmt1Ogtb8%3D Occurrence Handle1915281

    CAS  PubMed  Google Scholar 

  22. BS Gaut SV Muse WD Clark MT Clegg (1992) ArticleTitleRelative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J Mol Evol 35 292–303

    Google Scholar 

  23. BS Gaut SV Muse MT Clegg (1993) ArticleTitleRelative rates of nucleotide substitution in the chloroplast genome. Mol Phylogenet Evol 2 89–96 Occurrence Handle10.1006/mpev.1993.1009 Occurrence Handle1:CAS:528:DyaK2cXivFWjtLc%3D Occurrence Handle8043149

    Article  CAS  PubMed  Google Scholar 

  24. BS Gaut LG Clark JF Wendel MT Clegg SV Muse (1997) ArticleTitleComparisons of the molecular evolutionary process at rbcL and ndhF in the grass family (Poaceae). M Biol Evol 14 769–777 Occurrence Handle1:CAS:528:DyaK2sXksVahsL0%3D

    CAS  Google Scholar 

  25. VV Goremykin S Hansmann WF Martin (1997) ArticleTitleEvolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: Revised molecular estimates of two seed plant divergence times. Pl Syst Evol 206 337–351

    Google Scholar 

  26. VV Goremykin KI Hirsch-Ernst S Wolfl FH Hellwig (2003) ArticleTitleAnalysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Biol Evol 20 1499–1505 Occurrence Handle10.1093/molbev/msg159 Occurrence Handle1:CAS:528:DC%2BD3sXntlantb4%3D Occurrence Handle12832641

    Article  CAS  PubMed  Google Scholar 

  27. InstitutionalAuthorNameAPG (Angiosperm Phylogeny Group)GPWG (Grass Phylogeny Working Group) (2001) ArticleTitlePhylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Gard 88 373–373

    Google Scholar 

  28. Z Gu ARO Cavalcanti FC Chen P Bouman WH Li (2002) ArticleTitleExtent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 19 256–262 Occurrence Handle11861885

    PubMed  Google Scholar 

  29. RB Hallick A Bairoch (1994) ArticleTitleProposals for the naming of chloroplast genes. III. Nomenclature for open reading frames encoded in chloroplast genomes. Plant Mol Biol Rep 12 S29–S30 Occurrence Handle1:CAS:528:DyaK2MXivFGgsw%3D%3D

    CAS  Google Scholar 

  30. JA Hart (1987) ArticleTitleA cladistic analysis of conifers: Preliminary results. J Arnold Arbor 68 296–307

    Google Scholar 

  31. PS Herendeen PR Crane (1995) The fossil history of the monocotyledons. PJ Rudall PJ Cribb DF Cutler CJ Humphries (Eds) Monocotyledons: Systematics and evolution. Royal Botanic Gardens Kew 1–21

    Google Scholar 

  32. J Hiratsuka et al. (1989) ArticleTitleThe complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217 185–194 Occurrence Handle1:CAS:528:DyaL1MXlt1yjs7k%3D Occurrence Handle2770692

    CAS  PubMed  Google Scholar 

  33. NF Hughes (1994) The enigma ofangiosperm origins. Cambridge University Press Cambridge

    Google Scholar 

  34. H Hupfer M Swiatek S Hornung RG Hermann RM Maier WL Chiu B Sears (2000) ArticleTitleComplete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable euoenothera plastomes. Mol Gen Genet 263 581–585 Occurrence Handle1:CAS:528:DC%2BD3cXkt1egsLs%3D Occurrence Handle10852478

    CAS  PubMed  Google Scholar 

  35. K Ikeo Y Ogihara (2000) ArticleTitle Triticum aestivum chloroplast, complete genome (unpublished). . . .

    Google Scholar 

  36. H Katayama Y Ogihara (1996) ArticleTitlePhylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. Curr Genet 29 572–581 Occurrence Handle10.1007/s002940050087 Occurrence Handle1:CAS:528:DyaK28Xjs1yqsb0%3D Occurrence Handle8662197

    Article  CAS  PubMed  Google Scholar 

  37. T Kato T Kaneko S Sato Y Nakamura S Tabata (2000) ArticleTitleComplete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7 323–330 Occurrence Handle1:CAS:528:DC%2BD3MXpsVOntQ%3D%3D Occurrence Handle11214967

    CAS  PubMed  Google Scholar 

  38. P Kenrick PR Crane (1997) ArticleTitleThe origin and early evolution of land plants. Nature 389 33–39 Occurrence Handle10.1038/37918 Occurrence Handle1:CAS:528:DyaK2sXlvVClt7w%3D

    Article  CAS  Google Scholar 

  39. S Kumar K Tamura IB Jakobsen M Nei (2001) MEGA 2: Molecular evolutionary genetics analysis software. Arizona State University Tempe

    Google Scholar 

  40. J Laroche P Li J Bousquet (1995) ArticleTitleMitochondrial DNA and monocot–dicot divergence time. Mol Biol Evol 12 1151–1156 Occurrence Handle1:CAS:528:DyaK2MXovVOisLs%3D

    CAS  Google Scholar 

  41. WH Li D Graur (1991) Fundamentals of molecular evolution. Sinauer Associates Sunderland, MA

    Google Scholar 

  42. WH Li M Tanimura (1987) ArticleTitleThe molecular clock runs more slowly in man than in apes and monkeys. Nature 326 93–96 Occurrence Handle10.1038/326093a0 Occurrence Handle1:CAS:528:DyaL2sXhtlGqtrY%3D Occurrence Handle3102974

    Article  CAS  PubMed  Google Scholar 

  43. S Lin H Wu H Jia P Zhang R Dixon G May R Gonzales BA Roe (2000) ArticleTitle Medicago truncatula variety Jema Long A-17 chloroplast, complete sequence (unpublished). . . .

    Google Scholar 

  44. PJ Lockhart CJ Howe AC Barbrook AWD Larkum D Penny (1999) ArticleTitleSpectral analysis, systematic bias, and the evolution of chloroplasts. Mol Biol Evol 16 573–576 Occurrence Handle1:CAS:528:DyaK1MXislShs7s%3D

    CAS  Google Scholar 

  45. S Magallón MJ Sanderson (2001) ArticleTitleAbsolute diversification rates in angiosperm clades. Int J Org Evol 55 1762–1780

    Google Scholar 

  46. S Magallón PR Crane PS Herendeen (1999) ArticleTitlePhylogenetic pattern, diversity, and diversification of eudicots. Ann Mo Bot Gard 86 297–372

    Google Scholar 

  47. RM Maier K Neckermann GL Igloi H Kossel (1995) ArticleTitleComplete sequence of the maize chloroplast genome: Gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251 614–628 Occurrence Handle10.1006/jmbi.1995.0460 Occurrence Handle1:CAS:528:DyaK2MXotVWitbo%3D Occurrence Handle7666415

    Article  CAS  PubMed  Google Scholar 

  48. W Martin A Gierl H Saedler (1989) ArticleTitleMolecular evidence for pre-Cretaceous angiosperm origin. Nature 339 46–48 Occurrence Handle10.1038/339046a0 Occurrence Handle1:CAS:528:DyaL1MXktVChsr0%3D

    Article  CAS  Google Scholar 

  49. W Martin T Lagrange YF Li C Bisanz-Seyer R Mache (1990) ArticleTitleHypothesis for the evolutionary origin of the chloroplast ribosomal protein L21 of spinach. Curr Genet 18 553–556 Occurrence Handle1:CAS:528:DyaK3MXlslKhurg%3D Occurrence Handle2076556

    CAS  PubMed  Google Scholar 

  50. W Martin D Lydiate H Brinkmann G Forkmann H Saedler R Cerff (1993) ArticleTitleMolecular phylogenies in angiosperm evolution. Mol Biol Evol 10 140–162 Occurrence Handle1:CAS:528:DyaK3sXkvVOqs7o%3D Occurrence Handle8095691

    CAS  PubMed  Google Scholar 

  51. W Martin B Stoebe V Goremykin S Hansmann M Hasegawa KV Kowallik (1998) ArticleTitleGene transfer to the nucleus and the evolution of chloroplasts. Nature 393 162–165 Occurrence Handle1:CAS:528:DyaK1cXjt1ahsL0%3D Occurrence Handle11560168

    CAS  PubMed  Google Scholar 

  52. W Martin et al. (2002) ArticleTitleEvolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99 12246–12251 Occurrence Handle10.1073/pnas.182432999 Occurrence Handle1:CAS:528:DC%2BD38XntlCks70%3D Occurrence Handle12218172

    Article  CAS  PubMed  Google Scholar 

  53. S Mathews MJ Donoghue (1999) ArticleTitleThe root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286 947–950 Occurrence Handle10.1126/science.286.5441.947 Occurrence Handle1:CAS:528:DyaK1MXntFaktbg%3D Occurrence Handle10542147

    Article  CAS  PubMed  Google Scholar 

  54. Y Matsuoka Y Yamazaki Y Ogihara K Tsunewaki (2002) ArticleTitleWhole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol 19 2084–2091 Occurrence Handle1:CAS:528:DC%2BD38Xps12hsrY%3D Occurrence Handle12446800

    CAS  PubMed  Google Scholar 

  55. RS Millen RG Olmstead KL Adams JD Palmer NT Lao L Heggie TA Kavanagh JM Hibberd JC Gray CW Morden PJ Calie LS Jermiin KH Wolfe (2001) ArticleTitleMany parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13 645–658 Occurrence Handle1:CAS:528:DC%2BD3MXis1akt74%3D Occurrence Handle11251102

    CAS  PubMed  Google Scholar 

  56. Jr CN Miller (1977) ArticleTitleMesozoic conifers. Bot Rev 43 217–280

    Google Scholar 

  57. Jr CN Miller (1988) The origin of modern conifer families. CB Beck (Eds) Origin and evolution of gymnosperms. Columbia University Press New York 448–486

    Google Scholar 

  58. SV Muse BS Gaut (1997) ArticleTitleInterlocus comparisons of the nucleotide substitution process in the chloroplast genome. Genetics 146 393–399 Occurrence Handle1:CAS:528:DyaK2sXmsVartr0%3D Occurrence Handle9136027

    CAS  PubMed  Google Scholar 

  59. Nicholas KB, Nicholas HB Jr (1997) GeneDoc: Analysis and visualization of genetic variation. http://www.cris.com/~Ketchup/genedoc.shtml

  60. KJ Nicholas BH Tiffney AH Knoll (1983) ArticleTitlePatterns in vascular land plant diversification. Nature 303 614–616

    Google Scholar 

  61. DL Nickrent CL Parkinson JD Palmer RJ Duff (2000) ArticleTitleMultigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol 17 1885–1895 Occurrence Handle1:CAS:528:DC%2BD3cXptVWrsbg%3D Occurrence Handle11110905

    CAS  PubMed  Google Scholar 

  62. Y Ogihara K Isono T Kojima A Endo M Hanaoka T Shiina T Terachi S Utsugi M Murata N Mori S Takumi K Ikeo T Gojobori R Murai K Murai Y Matsuoka Y Ohnishi H Tajiri K Tsunewaki (2002) ArticleTitleStructural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Gen Genomics 266 740–746 Occurrence Handle10.1007/s00438-001-0606-9 Occurrence Handle1:CAS:528:DC%2BD38XjtlWhsLY%3D

    Article  CAS  Google Scholar 

  63. K Ohyama H Fukuzawa T Kohchi H Shirai T Sano S Sano K Umesono Y Shiki M Takeuchi Z Chang S Aota H Inokuchi H Ozeki (1986) ArticleTitleChloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322 572–574 Occurrence Handle1:CAS:528:DyaL28Xlt1ymt7o%3D

    CAS  Google Scholar 

  64. JD Palmer (1985a) ArticleTitleComparative organization of chloroplast genomes. Annu Rev Genet 19 325–354 Occurrence Handle10.1146/annurev.ge.19.120185.001545 Occurrence Handle1:CAS:528:DyaL28Xmt12ksg%3D%3D

    Article  CAS  Google Scholar 

  65. JD Palmer (1985b) Evolution of chloroplast and mitochondrial DNA in plants and algae. RJ MacIntyre (Eds) Molecular evolutionary genetics. Plenum Press New York 131–240

    Google Scholar 

  66. CL Parkinson KL Adams JD Palmer (1999) ArticleTitleMultigene analyses identify the three earliest lineages of extant flowering plants. Curr Biol 9 1485–1488 Occurrence Handle10.1016/S0960-9822(00)80119-0 Occurrence Handle1:CAS:528:DC%2BD3cXhtFyjug%3D%3D Occurrence Handle10607592

    Article  CAS  PubMed  Google Scholar 

  67. RA Price J Thomas SH Strauss PA Gadek CJ Quinn JD Palmer (1993) ArticleTitleFamilial relationships of the conifers from rbcL sequence data. Am J Bot 80 172

    Google Scholar 

  68. KM Pryer H Schneider AR Smith R Cranfill PG Wolf JS Hunt SD Sipes (2001) ArticleTitleHorsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409 618–622 Occurrence Handle10.1038/35054555 Occurrence Handle1:STN:280:DC%2BD3M7islSntw%3D%3D Occurrence Handle11214320

    Article  CAS  PubMed  Google Scholar 

  69. YL Qiu J Lee F Bernasconi-Quadroni DE Soltis PS Soltis M Zanis Z Chen V Savolainen MW Chase (1999) ArticleTitleThe earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genomes. Nature 402 404–407 Occurrence Handle10.1038/46536 Occurrence Handle1:STN:280:DC%2BD3c%2Flt1WlsA%3D%3D Occurrence Handle10586879

    Article  CAS  PubMed  Google Scholar 

  70. HS Rai HE O’Brien PA Reeves RG Olmstead SW Graham (2003) ArticleTitleInference of higher-order relationships in the cycads from a large chloroplast data set. Mol Phylogenet Evol 29 350–359 Occurrence Handle10.1016/S1055-7903(03)00131-3 Occurrence Handle1:CAS:528:DC%2BD3sXnt1amtrk%3D Occurrence Handle13678689

    Article  CAS  PubMed  Google Scholar 

  71. JAM Ramshaw DL Richardson BT Meatyard RH Brown M Richardson EW Thompson D Boulter (1972) ArticleTitleThe time of origin of the flowing plants determined by using amino acid sequence data of cytochrome C. New Phytol 71 773–779 Occurrence Handle1:CAS:528:DyaE38Xls1aisrw%3D

    CAS  Google Scholar 

  72. KS Renzaglia TH Johnson HD Gates DP Whittier (2001) ArticleTitleArchitecture of the sperm cell of Psilotum. Am J Bot 88 1151–1163 Occurrence Handle11454615

    PubMed  Google Scholar 

  73. B Rost (1999) ArticleTitleTwilight zone of protein sequence alignments. Protein Eng 12 85–94 Occurrence Handle10.1093/protein/12.2.85 Occurrence Handle1:CAS:528:DyaK1MXhvFehs70%3D Occurrence Handle10195279

    Article  CAS  PubMed  Google Scholar 

  74. N Saito M Nei (1987) ArticleTitleThe neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406–425 Occurrence Handle1:STN:280:BieC1cbgtVY%3D Occurrence Handle3447015

    CAS  PubMed  Google Scholar 

  75. MJ Sanderson (1997) ArticleTitleA nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14 1218–1231 Occurrence Handle1:CAS:528:DyaK2sXnvVCrsbk%3D

    CAS  Google Scholar 

  76. MJ Sanderson JA Doyle (2001) ArticleTitleSources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. Amer J Bot 88 1499–1516 Occurrence Handle1:CAS:528:DC%2BD3MXmsVyhtbg%3D

    CAS  Google Scholar 

  77. S Sato Y Nakamura T Kaneko E Asamizu S Tabata (1999) ArticleTitleComplete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6 283–290 Occurrence Handle1:CAS:528:DyaK1MXnt1ajsbs%3D Occurrence Handle10574454

    CAS  PubMed  Google Scholar 

  78. C Schmitz-Linneweber RM Maier JP Alcaraz A Cottet RG Herrmann R Mache (2001) ArticleTitleThe plastid chromosome of spinach (Spinacia oleracea): Complete nucleotide sequence and gene organization. Plant Mol Biol 45 307–315 Occurrence Handle1:CAS:528:DC%2BD3MXis1Kgt74%3D Occurrence Handle11292076

    CAS  PubMed  Google Scholar 

  79. K Shinozaki et al. (1986) ArticleTitleThe complete nucleotide sequence of tobacco chloroplast genome: Its gene organization and expression. EMBO J 5 2043–2049 Occurrence Handle1:CAS:528:DyaL28Xls1Kjt7o%3D

    CAS  Google Scholar 

  80. DE Soltis et al. (2000) ArticleTitleAngiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequendes. Bot J Linn Soc 133 381–461 Occurrence Handle10.1006/bojl.2000.0380

    Article  Google Scholar 

  81. PS Soltis DE Soltis MW Chase (1999) ArticleTitleAngiosperm phylogeny inferred from multiple genes: A research tool for comparative biology. Nature 402 402–404 Occurrence Handle1:CAS:528:DyaK1MXnvVykurg%3D Occurrence Handle10586878

    CAS  PubMed  Google Scholar 

  82. PS Soltis DE Soltis V Savolainen PR Crane TG Barraclough (2002) ArticleTitleRate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils. Proc Natl Acad Sci USA 99 4430–4435 Occurrence Handle10.1073/pnas.032087199 Occurrence Handle1:CAS:528:DC%2BD38XivFShtLg%3D Occurrence Handle11917101

    Article  CAS  PubMed  Google Scholar 

  83. GL Stebbins (1981) ArticleTitleCoevolution of grasses and herbivores. Ann Mo Bot Gard 68 75–76

    Google Scholar 

  84. GL Stebbins (1987) Grass systematics and evolution: Past, present and future. TR Sonderstrom KH Hilu CS Campbell ME Varkworth (Eds) Grass systematics and evolution. Smithsonian Institution Press Washington, DC 359–367

    Google Scholar 

  85. WN Stewart GW Rothwell (1993) Paleobotany and the evolution of plants, 2nd ed. Cambridge University Press Cambridge

    Google Scholar 

  86. B Stoebe W Martin KV Kowallik (1998) ArticleTitleDistribution and nomenclature of protein-coding genes in 12 chloroplast genomes. Plant Mol Biol Rep 16 243–255 Occurrence Handle10.1023/A:1007568326120 Occurrence Handle1:CAS:528:DyaK1MXlslSntL0%3D

    Article  CAS  Google Scholar 

  87. G Sun Q Ji DL Dilcher S Zheng KC Nixon X Wang (2002) ArticleTitleArchaefructaceae, a new basal angiosperm family. Science 296 899–904 Occurrence Handle10.1126/science.1069439 Occurrence Handle11988572

    Article  PubMed  Google Scholar 

  88. Swiss-Prot Protein Knowledgebase (2003) List of chloroplast and cyanelle encoded proteins. http://bioinformatics.weizmann. ac.il/databases/swiss-prot/release/plastid.txt , released 28 Feb

  89. DL Swofford (1998) PAUP 4.0 b1: Phylogenetic analysis using parsimony (and other methods). Sinauer Associates Sunderland, MA

    Google Scholar 

  90. F Tajima (1993) ArticleTitleUnbiased estimate of evolutionary distance between nucleotide sequences. Mol Biol Evol 10 677–688 Occurrence Handle1:CAS:528:DyaK3sXkvVOntb4%3D Occurrence Handle8336549

    CAS  PubMed  Google Scholar 

  91. N Takezaki A Rzhetsky M Nei (1995) ArticleTitlePhylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12 823–833 Occurrence Handle1:CAS:528:DyaK2MXns1yqsbg%3D Occurrence Handle7476128

    CAS  PubMed  Google Scholar 

  92. TN Taylor EL Taylor (1993) The biology and evolution of fossil plants, 1st ed. Prentice Hall Englewood Cliffs, NJ

    Google Scholar 

  93. BA Thomas RA Spicer (1987) The evolution and paleobiology of land plants. Croom Helm London

    Google Scholar 

  94. JR Thomasson (1987) Fossil grasses. TR Sonderstrom KH Hilu CS Campbell ME Varkworth (Eds) Grass systematics and evolution. Smithsonian Institution Press Washington, DC 1820–1986

    Google Scholar 

  95. T Wakasugi J Tsudzuki S Ito K Nakashima T Tsudzuki M Sugiura (1994) ArticleTitleLoss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Aad Sci USA 91 9794–9798 Occurrence Handle1:CAS:528:DyaK2cXmvFChsro%3D

    CAS  Google Scholar 

  96. Wakasugi, T, Nishikawa A, Yamada K, Sugiura M (2002) Complete nucleotide sequence of the chloroplast genome from a fern, Psilotum nudum (unpublished; available from NCBI, accession No. AP004638)

  97. PR Whitfeld W Bottemley (1983) ArticleTitleOrganization and structure of chloroplast genes. Annu Rev Plant Physiol 34 279–310 Occurrence Handle10.1146/annurev.pp.34.060183.001431 Occurrence Handle1:CAS:528:DyaL2cXmt1Ggug%3D%3D

    Article  CAS  Google Scholar 

  98. N Wikström V Savolainen M Chase (2001) ArticleTitleEvolution of the angiosperms: Calibrating the family tree. Proc R Soc Lond B 268 2211–2220 Occurrence Handle10.1098/rspb.2001.1782 Occurrence Handle1:STN:280:DC%2BD3MrmvVKmtQ%3D%3D Occurrence Handle11674868

    Article  CAS  PubMed  Google Scholar 

  99. KJ Willis JC McElwain (2002) The evolution of plants. Oxford University Press New York

    Google Scholar 

  100. KH Wolfe WH Li PM Sharp (1987) ArticleTitleRates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84 9054–9058 Occurrence Handle1:CAS:528:DyaL1cXovVyktQ%3D%3D Occurrence Handle3480529

    CAS  PubMed  Google Scholar 

  101. KH Wolfe MY Gouy W Yang PM Sharp WH Li (1989) ArticleTitleDate of the monocot–dicot divergence estimated from chloroplast chloroplast DNA sequence data. Proc Natl Acad Sci USA 86 6201–6205 Occurrence Handle1:CAS:528:DyaL1MXltlSqsLY%3D Occurrence Handle2762323

    CAS  PubMed  Google Scholar 

  102. YW Yang KN Lai PY Tai WH Li (1999) ArticleTitleRates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and the other angiosperm lineages. J Mol Evol 48 597–560 Occurrence Handle1:CAS:528:DyaK1MXisFGis7k%3D Occurrence Handle10198125

    CAS  PubMed  Google Scholar 

  103. W Zhang (2000) ArticleTitlePhylogeny of the grass family (Poaceae) from rpl16 intron sequence data. Mol Phylogenet Evol 15 135–146 Occurrence Handle1:CAS:528:DC%2BD3cXitl2rt78%3D Occurrence Handle10764541

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Robert Friedman for critical comments on an early version of the manuscript and Yoshihiro Matsuoka and Shu-Shin Wu for help with the gene group assignment for the three grasses and other taxa. We also thank the two reviewers’ critical and valuable comments and suggestions. This work was supported in part by National Science Council Grant NSC912311B001103, and Academia Sinica Grant IB91 to S.M.C., and NIH Grant GM30998 to W.H.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Miaw Chaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaw, SM., Chang, CC., Chen, HL. et al. Dating the Monocot–Dicot Divergence and the Origin of Core Eudicots Using Whole Chloroplast Genomes . J Mol Evol 58, 424–441 (2004). https://doi.org/10.1007/s00239-003-2564-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2564-9

Keywords

Navigation