Skip to main content
Log in

Tryptophan Biosynthesis in Stramenopiles: Eukaryotic Winners in the Diatom Complex Chloroplast

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Tryptophan is an essential amino acid that, in eukaryotes, is synthesized either in the plastids of photoautotrophs or in the cytosol of fungi and oomycetes. Here we present an in silico analysis of the tryptophan biosynthetic pathway in stramenopiles, based on analysis of the genomes of the oomycetes Phytophthora sojae and P. ramorum and the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Although the complete pathway is putatively located in the complex chloroplast of diatoms, only one of the involved enzymes, indole-3-glycerol phosphate synthase (InGPS), displays a possible cyanobacterial origin. On the other hand, in P. tricornutum this gene is fused with the cyanobacteria-derived hypothetical protein COG4398. Anthranilate synthase is also fused in diatoms. This fusion gene is almost certainly of bacterial origin, although the particular source of the gene cannot be resolved. All other diatom enzymes originate from the nucleus of the primary host (red alga) or secondary host (ancestor of chromalveolates). The entire pathway is of eukaryotic origin and cytosolic localization in oomycetes; however, one of the enzymes, anthranilate phosphoribosyl transferase, was likely transferred to the oomycete nucleus from the red algal nucleus during secondary endosymbiosis. This suggests possible retention of the complex plastid in the ancestor of stramenopiles and later loss of this organelle in oomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  PubMed  CAS  Google Scholar 

  • Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic Press, New York

    Google Scholar 

  • Bae YM, Crawford IP (1990) The Rhizobium meliloti TrpE(G) gene is regulated by attenuation, and its product Anthranilate synthase is regulated by feedback inhibition. J Bacteriol 172(6):3318–3327

    PubMed  CAS  Google Scholar 

  • Bartholmes P, Böker H, Jaenicke R (1979) Purification of tryptophan synthase from Saccharomyces cerevisiae and partial activity of its nicked subunits. Eur J Biochem 102:167–172

    Article  PubMed  CAS  Google Scholar 

  • Bodyl A (2005) Do plastid-related characters support the chromalveolate hypothesis? J Phycol 41:712–719

    Article  Google Scholar 

  • Bohlmann J, De Luca V, Eilert U, Martin W (1995) Purification and cDNA cloning of anthranilate synthase from Ruta graveolens: models of expression and properties of native recombinant enzymes. Plant J 7:491–501

    Article  PubMed  CAS  Google Scholar 

  • Braus GH (1991) Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for regulation of a eukaryotic biosynthetic pathway. Microbiol Rev 55:349–370

    PubMed  CAS  Google Scholar 

  • Caliguiri MG, Bauerle R (1991) Subunit communication in the anthranilate synthase complex from Salmonella typhimurinum. Science 252:1845–1848

    Article  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol 12:R62–R64

    Article  PubMed  CAS  Google Scholar 

  • Cheresh P, Harrison T, Fujioka H, Haldari K (2002) Targeting the malarial plastid via the parasitoforous vacuole. J Biol Chem 227:1265–1277

    Google Scholar 

  • Crawford IP (1975) Gene rearrangements in the evolution of the tryptophan synthetic patway. Bacteriol Rev 39:87–120

    PubMed  CAS  Google Scholar 

  • Crawford IP (1989) Evolution of biosynthetic pathway: tryptophan paradigm. Annu Rev Microbiol 43:567–600

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE, Yanofsky C (1970) Chorismate to tryptophan (Escherichia coli)—anthranilate synthetase, PR transferase, PRA isomerase, InGP synthetase, tryptophan synthetase. Methods Enzymol 17:365–380

    Article  CAS  Google Scholar 

  • DeMoss JA, Wegman J (1965) An eznyme aggregate in tryptophan pathway of Neurospora crassa. Proc Natl Acad Sci USA 54:241–247

    Article  PubMed  CAS  Google Scholar 

  • DeRocher A, Hagen CB, Froehlich JE, Feagin JE, Parsons M (2000) Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J Cell Sci 113:3969–3977

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  PubMed  CAS  Google Scholar 

  • Green JM, Nichols BP (1991) p-Aminobenzoate biosynthesis in Escherichia coli. J Biol Chem 266:12971–12975

    PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Harb OS, Chatterjee B, Fraunholz MJ, Crawford MJ, Nishi M, Roos DS (2004) Multiple functionally redundant signals mediate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii. Euk Cell 3:663–674

    Article  CAS  Google Scholar 

  • Hasegawa M, Kishino K, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hütter RP, Niederberger JA, DeMoss (1986) Tryptophan biosynthetic genes in eukaryotic microorganisms. Annu Rev Microbiol 40:55–77

  • Illingworth C, Mayer MJ, Elliott K, Hanfrey C, Walton NJ, Michael AJ (2003) The diverse bacterial origins of the Arabidopsis polyamine biosynthetic pathway. FEBS Lett 549:26–30

    Article  PubMed  CAS  Google Scholar 

  • Ishida K (2005) Protein targeting into plastids: a key to understanding the symbiogenetic acquisition of plastids. J Plant Res 118:237–245

    Article  PubMed  Google Scholar 

  • Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183

    Article  PubMed  CAS  Google Scholar 

  • Kroth PG (2002) Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int Rev Cyt Cell Biol 221:191–255

    CAS  Google Scholar 

  • Kummerfeld SK, Teichmann SA (2005) Relative rates of gene fusion and fission in multi-domain proteins. Trends Genet 21:25–30

    Article  PubMed  CAS  Google Scholar 

  • Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612

    CAS  Google Scholar 

  • Mackenzie SA (2005) Plant organellar protein targeting: a traffic plan still under construction. Trends Cell Biol 15(10):548–554

    Article  PubMed  CAS  Google Scholar 

  • Maheswari U, Montsant A, Goll J, Krishnasamy S, Rajyashri KR, Patell VM, Bowler C (2005) The Diatom EST Database. Nucleic Acids Res 33:D344–D347

    Article  PubMed  Google Scholar 

  • Matchett WH, DeMoss JA (1975) The subunit structure of tryptophan synthase from Neurospora crassa. J Biol Chem 250:2941–2946

    PubMed  CAS  Google Scholar 

  • Matern U. (19940 Dianthus species (Carnations): In vitro culture and biosynthesis of dianthalexin and other secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Vol 28. Medicinal and aromatic plants VII. Springer-Verlag, Heidelberg, pp 170–184

  • Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (1999) Plastids and protein targeting. J Euk Microbiol 46:339–346

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959

    Article  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Brunak S, von Heijne G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12:3–9

    Article  PubMed  CAS  Google Scholar 

  • Obornik M, Green BR (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22:2343–2353

    Article  PubMed  CAS  Google Scholar 

  • Ohta N, Sato N, Kawano S, Kuroiwa T (1993) The trpA gene on the plastid genome of Cyanidium caldarium strain RK-1. Curr Genet 25:357–361

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Prantl F, Strasser A, Aebi M, Furter R, Niederberger P (1985) Purification and characterization of the indole-3-glycerolphosphate synthase/anthranilate synthase complex of Saccharomyces cerevisiae. Eur J Biochem 146:95–100

    Article  PubMed  CAS  Google Scholar 

  • Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW (2006) Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryot Cell 5:1517–1531

    Article  PubMed  CAS  Google Scholar 

  • Siddall ME, Whiting MF (1999) Long-branch abstractions. Cladistics 15:9–24

    Article  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 15:4876–4882

    Article  Google Scholar 

  • Tyler BM, Tripathy S, Zhang XM, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CMB, Dorrance AE, Dou DL, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJG, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JKC, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BWS, Terry A, Torto-Alalibo TA, Win J, Xu ZY, Zhang HB, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Xie G, Forst C, Bonner C, Jensen RA (2002) Significance of two distinct types of tryptophan synthase beta chain in Bacteria, Archaea and higher plants. Genome Biol 3:0004.1–0004.13

    Article  Google Scholar 

  • Yanofsky C, Platt T, Crawford IP, Nichols BP, Christie GE, Horowitz H, Vancleemput M, Wu AM (1981) The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res 9:6647–6668

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hacket JD, Pinto G, Bhattacharya D (2004) Molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Last RL (1995) Immunological characterization and chloroplast import of the tryptophan biosynthetic enzymes of the flowering plant Arabidopsis thaliana. J Biol Chem 270:6081–6087

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic, Project No. IAA500220502 and Research Plan No. z60220518, and Ministry of Education of the Czech Republic, project no: 6007665801. We thank A. Lilley for critical reading of the manuscript and Beverley R. Green for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Oborník.

Electronic supplementary material

Electronic supplementary material

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiroutová, K., Horák, A., Bowler, C. et al. Tryptophan Biosynthesis in Stramenopiles: Eukaryotic Winners in the Diatom Complex Chloroplast. J Mol Evol 65, 496–511 (2007). https://doi.org/10.1007/s00239-007-9022-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9022-z

Keywords

Navigation