Skip to main content

Advertisement

Log in

A Neutral Origin for Error Minimization in the Genetic Code

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The genetic code has the remarkable property of error minimization, whereby the arrangement of amino acids to codons is highly efficient at reducing the deleterious effects of random point mutations and transcriptional and translational errors. Whether this property has been explicitly selected for is unclear. Here, three scenarios of genetic code evolution are examined, and their effects on error minimization assessed. First, a simple model of random stepwise addition of physicochemically similar amino acids to the code is demonstrated to result in substantial error minimization. Second, a model of random addition of physicochemically similar amino acids in a codon expansion scheme derived from the Ambiguity Reduction Model results in improved error minimization over the first model. Finally, a recently introduced 213 Model of genetic code evolution is examined by the random addition of physicochemically similar amino acids to a primordial core of four amino acids. Under certain conditions, 22% of the resulting codes produced according to the latter model possess equivalent or superior error minimization to the standard genetic code. These analyses demonstrate that a substantial proportion of error minimization is likely to have arisen neutrally, simply as a consequence of code expansion, facilitated by duplication of the genes encoding adaptor molecules and charging enzymes. This implies that selection is at best only partly responsible for the property of error minimization. These results caution against assuming that selection is responsible for every beneficial trait observed in living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alff-Steinberger C (1969) The genetic code and error transmission. Proc Natl Acad Sci USA 64:584–591

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Anantharaman V, Koonin EV (2002) Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase and PP-ATPase nucleotide binding domains: implications for protein evolution in the RNA world. Proteins 48:1–14

    Article  PubMed  CAS  Google Scholar 

  • Ardell DH (1998) On error minimization in a sequential origin of the standard genetic code. J Mol Evol 47:1–13

    Article  PubMed  CAS  Google Scholar 

  • Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (1989) The extension reached by the minimization of the polarity distances during the evoluton of the genetic code. J Mol Evol 29:288–293

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (2001) The origin of the genetic code cannot be studied using measurements based on the PAM matrix because this matrix reflects the code itself, making any such analyses tautologous. J Theor Biol 208:141–144

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M, Medugno M (1999) Physicochemical optimization in the genetic code origin as the number of codified amino acids increases. J Mol Evol 49:1–10

    Article  PubMed  CAS  Google Scholar 

  • Eggertsson G, Soll D (1988) Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol Rev 52:354–374

    PubMed  CAS  Google Scholar 

  • Feng L, Sheppard K, Namgoong S, Ambrogelly A, Polycarpo C, Randau L, Tumbula-Hansen D, Soll D (2004) Aminoacyl-tRNA synthesis by pre-translational amino acid modification. RNA Biol 1:16–20

    PubMed  CAS  Google Scholar 

  • Fitch WM, Upper K (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harbor Symp Quant Biol 52:759–767

    PubMed  CAS  Google Scholar 

  • Freeland SJ, Hurst LD (1998) The genetic code is one in a million. J Mol Evol 47:238–248

    Article  PubMed  CAS  Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17:511–518

    PubMed  CAS  Google Scholar 

  • Gilis D, Massar S, Cerf NJ, Rooman M (2001) Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol 2:11

    Article  Google Scholar 

  • Goldman N (1993) Further results on error minimization in the genetic code. J Mol Evol 37:662–664

    PubMed  CAS  Google Scholar 

  • Goodarzi H, Nejad HA, Torabi N (2004) On the optimality of the genetic code, with consideration of termination codons. BioSystems 77:163–173

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598

    Article  PubMed  CAS  Google Scholar 

  • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Hurst LD (1992) A quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417

    Article  Google Scholar 

  • Ikehara K, Niihara Y (2007) Origin and evolutionary process of the genetic code. Curr Med Chem 14:3221–3231

    Article  PubMed  CAS  Google Scholar 

  • Jakubowski H, Goldman E (1992) Editing of errors in selection of amino acids for protein synthesis. Microbiol Rev 56:412–429

    PubMed  CAS  Google Scholar 

  • Kvenvolden KA, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926

    Article  PubMed  CAS  Google Scholar 

  • Lawless JG, Kvenvolden KA, Peterson E, Ponnamperuma C, Moore C (1971) Amino acids indigenous to the Murray meteorite. Science 173:626–627

    Article  PubMed  CAS  Google Scholar 

  • Massey SE (2006) A sequential ‘2-1-3’ model of genetic code evolution that explains codon constraints. J Mol Evol 62:809–810

    Article  PubMed  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  PubMed  CAS  Google Scholar 

  • Nagel GM, Doolittle RF (1995) Phylogenetic analysis of the aminoacyl-tRNA synthetases. J Mol Evol 40:487–498

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

    Google Scholar 

  • Sella G, Ardell DH (2002) The impact of message mutation on the fitness of a genetic code. J Mol Evol 54:638–651

    Article  PubMed  CAS  Google Scholar 

  • Sonneborn TM (1965) Evolving genes and proteins. Academic Press, New York

    Google Scholar 

  • Woese CR (1965) On the evolution of the genetic code. Proc Natl Acad Sci USA 54:1546–1552

    Article  PubMed  CAS  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    Article  PubMed  CAS  Google Scholar 

  • Xue H, Tong KL, Marck C, Grosjean H, Wong JT (2003) Transfer RNA paralogs: evidence for genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene 310:59–66

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank three anonymous referees of an early version of the manuscript, and two subsequent reviewers, for their valuable and constructive comments. I would also like to thank Dr. B. R. Francis (University of Wyoming) for his critique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Massey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massey, S.E. A Neutral Origin for Error Minimization in the Genetic Code. J Mol Evol 67, 510–516 (2008). https://doi.org/10.1007/s00239-008-9167-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9167-4

Keywords

Navigation