Skip to main content
Log in

A Comparative Approach Shows Differences in Patterns of Numt Insertion During Hominoid Evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Nuclear integrations of mitochondrial DNA (numts) are widespread among eukaryotes, although their prevalence differs greatly among taxa. Most knowledge of numt evolution comes from analyses of whole-genome sequences of single species or, more recently, from genomic comparisons across vast phylogenetic distances. Here we employ a comparative approach using human and chimpanzee genome sequence data to infer differences in the patterns and processes underlying numt integrations. We identified 66 numts that have integrated into the chimpanzee nuclear genome since the human–chimp divergence, which is significantly greater than the 37 numts observed in humans. By comparing these closely related species, we accurately reconstructed the preintegration target site sequence and deduced nucleotide changes associated with numt integration. From >100 species-specific numts, we quantified the frequency of small insertions, deletions, duplications, and instances of microhomology. Most human and chimpanzee numt integrations were accompanied by microhomology and short indels of the kind typically observed in the nonhomologous end-joining pathway of DNA double-strand break repair. Human-specific numts have integrated into regions with a significant deficit of transposable elements; however, the same was not seen in chimpanzees. From a separate data set, we also found evidence for an apparent increase in the rate of numt insertions in the last common ancestor of humans and the great apes using a polymerase chain reaction–based screen. Last, phylogenetic analyses indicate that mitochondrial-numt alignments must be at least 500 bp, and preferably >1 kb in length, to accurately reconstruct hominoid phylogeny and recover the correct point of numt insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anderson MJ, Dixson AF (2002) Sperm competition: Motility and the midpiece in primates. Nature 416:496

    Article  PubMed  CAS  Google Scholar 

  • Andersson SGE, Karlberg O, Canbäck B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Phil Trans R Soc Lond B 358:165–179

    Article  CAS  Google Scholar 

  • Anthony NM, Clifford SL, Bawe-Johnson M, Abernethy KA, Bruford MW, Wickings EJ (2007) Distinguishing gorilla mitochondrial sequences from nuclear integrations and PCR recombinants: Guidelines for their diagnosis in complex sequence databases. Mol Phylogenet Evol 43:553–566

    Article  PubMed  CAS  Google Scholar 

  • Antunes A, Ramos MJ (2005) Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes. Genomics 86:708–717

    Article  PubMed  CAS  Google Scholar 

  • Antunes A, Pontius J, Ramos MJ, O’Brien SJ, Johnson WE (2007) Mitochondrial introgressions into the nuclear genome of the domestic cat. J Hered 98:4141–4420

    Article  CAS  Google Scholar 

  • Behura SK (2007) Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera) genome. Mol Biol Evol 24:1492–1505

    Article  PubMed  CAS  Google Scholar 

  • Bensasson D, Zhang D-X, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321

    Article  PubMed  Google Scholar 

  • Bensasson D, Feldman MW, Petrov DA (2003) Rates of DNA duplication and mitochondrial DNA insertion in the human genome. J Mol Evol 57:343–354

    Article  PubMed  CAS  Google Scholar 

  • Blanchard JL, Schmidt GW (1996) Mitochondrial DNA migration events in yeast and humans: Integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. Mol Biol Evol 13:537–548

    PubMed  CAS  Google Scholar 

  • Blanchard JL, Lynch M (2000) Organellar genes: why do they end up in the nucleus? Trends Genet 16:315–320

    Article  PubMed  CAS  Google Scholar 

  • Burgess R, Yang Z (2008) Estimation of hominoid ancestral population sizes under Bayesian coalescent models incorporating mutation rate variation and sequencing errors. Mol Biol Evol 25:1979–1994

    Article  PubMed  CAS  Google Scholar 

  • CSAC: The Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  CAS  Google Scholar 

  • Corneo B, Wendland RL, Deriano L, Cui X, Klein IA, Wong SY, Arnal S, Holub AJ, Weller GR, Pancake BA Shah S, Brandt VL, Meek K, Roth DB (2007) Rag mutations reveal robust alternative end joining. Nature 449:483–486

    Article  PubMed  CAS  Google Scholar 

  • Cost GJ, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. EMBO J 21:5899–5910

    Article  PubMed  CAS  Google Scholar 

  • Daley JM, Wilson TE (2005) Rejoining of DNA double-strand breaks as a function of overhang length. Mol Cell Biol 25:896–906

    Article  PubMed  CAS  Google Scholar 

  • Decottignies A (2007) Microhomology-mediated end joining in fission yeast is repressed by Pku70 and relies on genes involved in homologous recombination. Genetics 176:1403–1415

    Article  PubMed  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Gasior SL, Preston G, Hedges DL, Gilbert N, Moran JV, Deininger PL (2007) Characterization of pre-insertion loci of de novo L1 insertions. Gene 390:190–198

    Article  PubMed  CAS  Google Scholar 

  • Gherman A, Chen PE, Teslovich TM, Stankiewicz P, Withers M, Kashuk CS, Chakravarti A, Lupski JR, Cutler DJ, Katsanis N (2007) Population bottlenecks as a potential major shaping force of human genome architecture. PLoS Genet 3:e119

    Article  PubMed  CAS  Google Scholar 

  • Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598

    Article  PubMed  CAS  Google Scholar 

  • Hazkani-Covo E, Sorek R, Graur D (2003) Evolutionary dynamics of large numts in the human genome: rarity of independent insertions and abundance of post-insertion duplications. J Mol Evol 56:169–174

    Article  PubMed  CAS  Google Scholar 

  • Hazkani-Covo E, Covo S (2008) Numt-mediated double-strand break repair mitigates deletions during primate genome evolution. PLoS Genet 4:e1000237

    Article  PubMed  CAS  Google Scholar 

  • Hazkani-Covo E, Graur D (2007) A comparative analysis of numt evolution in human and chimpanzee. Mol Biol Evol 24:13–18

    Article  PubMed  CAS  Google Scholar 

  • Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci U S A 92:532–536

    Article  PubMed  CAS  Google Scholar 

  • Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408:708–713

    Article  PubMed  CAS  Google Scholar 

  • IHGSC: International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Jareborg N, Birney E, Durbin R (1999) Comparative analysis of noncoding regions of 77 orthologous mouse and human gene pairs. Genome Res 9:815–824

    Article  PubMed  CAS  Google Scholar 

  • Jensen-Seaman MI, Deinard AS, Kidd KK (2001) Modern African ape populations as genetic and demographic models of the last common ancestor of humans, chimpanzees, and gorillas. J Hered 92:475–480

    Article  PubMed  CAS  Google Scholar 

  • Jensen-Seaman MI, Sarmiento EE, Deinard AS, Kidd KK (2004) Nuclear integrations of mitochondrial DNA in gorillas. Am J Primatol 63:139–147

    Article  PubMed  CAS  Google Scholar 

  • Jensen-Seaman MI, Hooper-Boyd KA (2008) Molecular clocks: determining the age of the human-chimpanzee divergence. In: Encyclopedia of life sciences (ELS). Wiley, Chichester

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    PubMed  CAS  Google Scholar 

  • Krampis K, Tyler BM, Boore JL (2006) Extensive variation in nuclear mitochondrial DNA content between the genomes of Phytophthora sojae and Phytophthora ramorum. Mol Plant Microbe Interact 19:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lascaro D, Castellana S, Gasparre G, Romeo G, Saccone C, Attimonelli M (2008) The RHNumtS compilation: features and bioinformatics approaches to locate and quantify human NumtS. BMC Genomics 9:267

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2005) Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet 21:655–663

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Mishmar D, Ruiz-Pesini E, Brandon M, Wallace DC (2004) Mitochondrial DNA-like sequences in the nucleus (NUMTs): insights into our African origins and the mechanism of foreign DNA integration. Hum Mutat 23:125–133

    Article  PubMed  CAS  Google Scholar 

  • Mourier T, Hansen AJ, Willerslev E, Arctander P (2001) The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18:1833–1837

    PubMed  CAS  Google Scholar 

  • Noutsos C, Kleine T, Armbruser U, DalCorso G, Leister D (2007) Nuclear insertions of organellar DNA can create novel patches of functional exon sequences. Trends Genet 23:597–601

    Article  PubMed  CAS  Google Scholar 

  • Odersky A, Panyutin IV, Panyutin IG, Schunck C, Feldmann E, Goedecke W, Neumann RD, Obe G, Pfeiffer P (2002) Repair of sequence-specific 125I-induced double-strand breaks by nonhomolougous DNA end joining in mammalian cell-free extracts. J Biol Chem 277:11756–11764

    Article  PubMed  CAS  Google Scholar 

  • Pamilo P, Viljakainen L, Vihavainen A (2007) Exceptionally high density of NUMTs in the honeybee genome. Mol Biol Evol 24:1340–1346

    Article  PubMed  CAS  Google Scholar 

  • Pereira SL, Baker AJ (2004) Low number of mitochondrial pseudogenes in the chicken (Gallus gallus) nuclear genome: implications for molecular inference of population history and phylogenetics. BMC Evol Biol 4:17

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Model test: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Puente XS, Velasco G, Gutiérrez-Fernández A, Bertranpetit J, King M-C, López-Otín C (2006) Comparative analysis of cancer genes in the human and chimpanzee genomes. BMC Genomics 7:15

    Article  PubMed  CAS  Google Scholar 

  • Raaum RL, Sterner KN, Noviello CM, Stewart C-B, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: Concordance with fossil and nuclear DNA evidence. J Hum Evol 48:237–257

    Article  PubMed  Google Scholar 

  • Ricchetti M, Fairhead C, Dujon B (1999) Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature 402:96–100

    Article  PubMed  CAS  Google Scholar 

  • Ricchetti M, Tekaia F, Dujon B (2004) Continued colonization of the human genome by mitochondrial DNA. PLoS Biol 2:e273

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Roth DB, Porter TN, Wilson JH (1985) Mechanisms of nonhomolgous recombination in mammalian cells. Mol Cell Biol 5:2599–2607

    PubMed  CAS  Google Scholar 

  • Smit AFA, Hubley R, Green P RepeatMasker Open-3.0. 1996–2004. http://www.repeatmasker.org

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  • Stauffer RL, Walker A, Ryder OA, Lyons-Weiler M, Hedges SB (2001) Human and ape molecular clocks and constraints on paleontological hypotheses. J Hered 92:469–474

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland

    Google Scholar 

  • Thalmann O, Hebler J, Poinar HN, Pääbo S, Vigilant L (2004) Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other great apes. Mol Ecol 13:321–325

    Article  PubMed  CAS  Google Scholar 

  • Thorsness PQ, Tox TD (1990) Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346:376–379

    Article  PubMed  CAS  Google Scholar 

  • Tourmen Y, Baris O, Dessen P, Jacques C, Malthièry Y, Reynier P (2002) Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics 80:71–77

    Article  PubMed  CAS  Google Scholar 

  • van der Kuyl AC, Kuiken CL, Dekker JT, Perizonius WR, Goudsmit J (1995) Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: A problem of ancient DNA and molecular phylogenies. J Mol Evol 40:652–657

    Article  PubMed  Google Scholar 

  • Varga T, Aplan PD (2005) Chromosomal aberrations induced by double strand DNA breaks. DNA Repair 4:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh B, Dandona N, Brenner S (2006) Fugu genome does not contain mitochondrial pseudogenes. Genomics 87:307–310

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD (1997) Ancient mtDNA sequences in the human nuclear genome: A potential source of errors in identifying pathogenic mutations. Proc Natl Acad Sci U S A 94:14900–14905

    Article  PubMed  CAS  Google Scholar 

  • Willett-Brozick JE, Savul SA, Richey LE, Baysal BE (2001) Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation. Hum Genet 109:216–223

    Article  PubMed  CAS  Google Scholar 

  • Woischnik M, Moraes CT (2002) Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12:885–893

    PubMed  CAS  Google Scholar 

  • Yan CT, Boboila C, Souza EK, Franco S, Hickernell TR, Murphy M, Gumaste S, Geyer M, Zarrin AA, Manis JP, Rajewsky K, Alt FW (2007) IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449:478–482

    Article  PubMed  CAS  Google Scholar 

  • Yu N, Jensen-Seaman MI, Chemnick L, Kidd JR, Deinard AS, Ryder O, Kidd KK, Li WH (2003) Low nucleotide diversity in chimpanzees and bonobos. Genetics 164:1511–1518

    PubMed  CAS  Google Scholar 

  • Zhang D-X, Hewitt GM (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol Evol 11:247–252

    Article  Google Scholar 

  • Zingler N, Willhoeft U, Brose H-P, Schoder V, Jahns T, Hanschmann K-MO, Morrisch TA, Löwer J, Schumann GG (2005) Analysis of 5′ junctions of human LINE-1 and Alu retrotransposons suggest an alternative model for 5′-end attachment requiring microhomology-mediated end-joining. Genome Res 15:780–789

    Article  PubMed  CAS  Google Scholar 

  • Zischler H, Geisert H, von Haeseler A, Pääbo S (1995a) A nuclear “fossil” of the mitochondrial D-loop and the origin of modern humans. Nature 378:489–492

    Article  PubMed  CAS  Google Scholar 

  • Zischler H, Höss M, Handt O, von Haeseler A, van der Kuyl AC, Goudsmit J (1995b) Detecting dinosaur DNA. Science 266:1229–1232

    Google Scholar 

Download references

Acknowledgments

We are grateful to the National Institutes of Health for funding (Grant No. R15 GM073682-01 to N. M. Anthony). Additional funding came from the Bayer School of Natural and Environmental Sciences at Duquesne (to M. I. Jensen-Seaman and J. H. Wildschutte). We thank Charles Bell (University of New Orleans) for collaboration in the phylogenetic reconstructions. This manuscript has been substantially improved by thoughtful comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Jensen-Seaman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 76 kb)

(DOC 103 kb)

(PDF 41 kb)

(PDF 62 kb)

(PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen-Seaman, M.I., Wildschutte, J.H., Soto-Calderón, I.D. et al. A Comparative Approach Shows Differences in Patterns of Numt Insertion During Hominoid Evolution. J Mol Evol 68, 688–699 (2009). https://doi.org/10.1007/s00239-009-9243-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9243-4

Keywords

Navigation