Skip to main content
Log in

Insertion Sequence-Driven Evolution of Escherichia coli in Chemostats

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Insertion sequence (IS) elements are present in almost all bacterial genomes and are mobile enough to provide genomic tools to differentiate closely related isolates. They can be used to estimate genetic diversity and identify fitness-enhancing mutations during evolution experiments. Here, we determined the genomic distribution of eight IS elements in 120 genomes sampled from Escherichia coli populations that evolved in glucose- and phosphate-limited chemostats by comparison to the ancestral pattern. No significant differential transposition of the various IS types was detected across the environments. The phylogenies revealed substantial diversity amongst clones sampled from each chemostat, consistent with the phenotypic diversity within populations. Two IS-related changes were common to independent chemostats, suggesting parallel evolution. One of them corresponded to insertions of IS1 elements within rpoS encoding the master regulator of stress conditions. The other parallel event was an IS5-dependent deletion including mutY involved in DNA repair, thereby providing the molecular mechanism of generation of mutator clones in these evolving populations. These deletions occurred in different co-existing genotypes within single populations and were of various sizes. Moreover, differential locations of IS elements combined with their transpositional activity provided evolved clones with different phenotypic landscapes. Therefore, IS elements strongly influenced the evolutionary processes in continuous E. coli cultures by providing a way to modify both the global regulatory network and the mutation rates of evolving cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alokam S, Liu SL, Said K, Sanderson KE (2002) Inversions over the terminus region in Salmonella and Escherichia coli: IS200s as the sites of homologous recombination inverting the chromosome of Salmonella enterica serovar typhi. J Bacteriol 184:6190–6197

    Article  PubMed  CAS  Google Scholar 

  • Atwood KC, Schneider LK, Ryan FJ (1951) Periodic selection in Escherichia coli. Proc Natl Acad Sci USA 37:146–155

    Article  PubMed  CAS  Google Scholar 

  • Bartosik D, Putyrski M, Dziewit L, Malewska E, Szymanik M, Jagiello E, Lukasik J, Baj J (2008) Transposable modules generated by a single copy of insertion sequence ISPme1 and their influence on structure and evolution of natural plasmids of Paracoccus methylutens DM12. J Bacteriol 190:3306–3313

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Blot M (1994) Transposable elements and adaptation of host bacteria. Genetica 93:5–12

    Article  PubMed  CAS  Google Scholar 

  • Chao L, Vargas C, Spear BB, Cox EC (1983) Transposable elements as mutator genes in evolution. Nature 303:633–635

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Chou H-H, Berthet J, Marx CJ (2009) Fast growth increases the selective advantage of a mutation arising recurrently during evolution under metal limitation. PLoS Genet 5(9):e1000652

    Article  PubMed  Google Scholar 

  • Cooper VS, Schneider D, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183:2834–2841

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Pichon S, Ling A, Pérez P, Delaunay C, Vavre F, Bouchon D, Grève P (2008) Intense transpositional activity of insertion sequences in an ancient obligate endosymbiont. Mol Biol Evol 25:1889–1896

    Article  PubMed  CAS  Google Scholar 

  • de Visser JAGM, Akkermans ADL, Hoekstra RF, de Vos WM (2004) Insertion-sequence-mediated mutations isolated during adaptation to growth and starvation in Lactococcus lactis. Genetics 168:1145–1157

    Article  PubMed  Google Scholar 

  • Dekel E, Alon U (2005) Optimality and evolutionary tuning of the expression level of a protein. Nature 436:588–592

    Article  PubMed  CAS  Google Scholar 

  • Drevinek P, Baldwin A, Lindenburg L, Joshi LT, Marchbank A, Vosahlikova S, Dowson CG, Mahenthiralingam E (2010) Oxidative stress of Burkholderia cenocepacia induces insertion sequence-mediated genomic rearrangements that interfere with macrorestriction-based genotyping. J Clin Microbiol 48:34–40

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum Z, Livneh Z (1998) UV light induces IS10 transposition in Escherichia coli. Genetics 149:1173–1181

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Ferenci T (1999) Regulation by nutrient limitation. Curr Opin Microbiol 2:208–213

    Article  PubMed  CAS  Google Scholar 

  • Ferenci T (2008a) Bacterial physiology, regulation and mutational adaptation in a chemostat environment. Adv Microb Physiol 53:169–229

    Article  PubMed  CAS  Google Scholar 

  • Ferenci T (2008b) The spread of a beneficial mutation in experimental bacterial populations: the influence of the environment and genotype on the fixation of rpoS mutations. Heredity 100:446–452

    Article  PubMed  CAS  Google Scholar 

  • Ferenci T, Zhou Z, Betteridge T, Ren Y, Liu Y, Feng L, Reeves PR, Wang L (2009) Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12. J Bacteriol 191:4025–4029

    Article  PubMed  CAS  Google Scholar 

  • Futuyama DJ (1986) Evolutionary biology, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Gerrish PJ, Lenski RE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 102:127–144

    Article  PubMed  Google Scholar 

  • Golubov A, Gierczynski R, Heesemann J, Rakin A (2005) A novel insertion sequence element, ISYen2, as an epidemiological marker for weakly pathogenic bioserotypes of Yersinia enterocolitica. Int J Med Microbiol 295:213–226

    Article  PubMed  CAS  Google Scholar 

  • Gregory ST, Dahlberg AE (2008) Transposition of an insertion sequence, ISTth7, in the genome of the extreme thermophile Thermus thermophilus HB8. FEMS Microbiol Lett 289:187–192

    Article  PubMed  CAS  Google Scholar 

  • Hall BG (1999) Spectra of spontaneous growth-dependent and adaptive mutations at ebgR. J Bacteriol 181:1149–1155

    PubMed  CAS  Google Scholar 

  • Hall BG, Parker LL, Betts PW, DuBose RF, Sawyer SA, Hartl DL (1989) IS103, a new insertion element in Escherichia coli: characterization and distribution in natural populations. Genetics 121:423–431

    PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (2002) Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4:341–346

    PubMed  CAS  Google Scholar 

  • Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi SH et al (2009) Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J Mol Biol 394:644–652

    Article  PubMed  CAS  Google Scholar 

  • Kaleta P, O’Callaghan J, Fitzgerald GF, Beresford TP, Ross RP (2010) Crucial role for insertion sequence elements in Lactobacillus helveticus evolution as revealed by interstrain genomic comparison. Appl Environ Microbiol 76:212–220

    Article  PubMed  CAS  Google Scholar 

  • Kichenaradja P, Siguier P, Pérochon J, Chandler M (2010) ISbrowser: an extension of ISfinder for visualizing insertion sequences in prokaryotic genomes. Nucleic Acids Res 38(Database issue):D62–D68

    Article  PubMed  CAS  Google Scholar 

  • Kitamura K, Torii Y, Matsuoka C, Yamamoto K (1995) DNA sequence changes in mutations in the tonB gene on the chromosome of Escherichia coli K-12: Insertion elements dominate the mutational spectra. Jpn J Genet 70:35–46

    Article  PubMed  CAS  Google Scholar 

  • LeClerc JE, Li B, Payne WL, Cebula T (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211

    Article  PubMed  CAS  Google Scholar 

  • Maharjan R, Seeto S, Notley-McRobb L, Ferenci T (2006) Clonal adaptive radiation in a constant environment. Science 313:514–517

    Article  PubMed  CAS  Google Scholar 

  • Maharjan RP, Seeto S, Ferenci T (2007) Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population. J Bacteriol 189:2350–2358

    Article  PubMed  CAS  Google Scholar 

  • Maharjan R, Zhou Z, Ren Y, Li Y, Gaffé J, Schneider D, McKenzie C, Reeves PR, Ferenci T, Wang L (2010) Genomic identification of a novel mutation in hfq that provides multiple benefits in evolving glucose-limited populations of Escherichia coli. J Bacteriol 192:4517–4521

    Article  PubMed  CAS  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    PubMed  CAS  Google Scholar 

  • McClintock B (1965) The control of gene expression in maize. Brookhaven Symp Biol 18:162–184

    Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Miller JH (1996) Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 50:625–643

    Article  PubMed  CAS  Google Scholar 

  • Naas T, Blot M, Fitch WM, Arber W (1994) Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics 136:721–730

    PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Notley-McRobb L, Ferenci T (1999) The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Environ Microbiol 1:45–52

    Article  PubMed  CAS  Google Scholar 

  • Notley-McRobb L, Ferenci T (2000) Experimental analysis of molecular events during mutational periodic selections in bacterial evolution. Genetics 156:1493–1501

    PubMed  CAS  Google Scholar 

  • Notley-McRobb L, Pinto R, Seeto S, Ferenci T (2002) Regulation of mutY and nature of mutator mutations in Escherichia coli populations under nutrient limitation. J Bacteriol 184:739–745

    Article  PubMed  CAS  Google Scholar 

  • Notley-McRobb L, Seeto S, Ferenci T (2003) The influence of cellular physiology on the initiation of mutational pathways in Escherichia coli populations. Proc R Soc Lond B 270:843–848

    Article  Google Scholar 

  • Papadopoulos D, Schneider D, Meier-Eiss J, Arber W, Lenski RE, Blot M (1999) Genomic evolution during a 10, 000-generation experiment with bacteria. Proc Natl Acad Sci USA 96:3807–3812

    Article  PubMed  CAS  Google Scholar 

  • Pasternak C, Ton-Hoang B, Coste G, Bailone A, Chandler M, Sommer S (2010) Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet 6(1):e1000799

    Article  PubMed  Google Scholar 

  • Pellicer MT, Badia J, Aguilar J, Baldoma L (1996) glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J Bacteriol 178:2051–2059

    PubMed  CAS  Google Scholar 

  • Pelosi L, Kühn L, Guetta D, Garin J, Geiselmann J, Lenski RE, Schneider D (2006) Parallel changes in global protein profiles during long-term experimental evolution in Escherichia coli. Genetics 173:1851–1869

    Article  PubMed  CAS  Google Scholar 

  • Peterson CN, Mandel MJ, Silhavy TJ (2005) Escherichia coli starvation diets: essential nutrients weigh in distinctly. J Bacteriol 187:7549–7553

    Article  PubMed  CAS  Google Scholar 

  • Philippe N, Pelosi L, Lenski RE, Schneider D (2009) Evolution of penicillin-binding protein 2 concentration and cell shape during a long-term experiment with Escherichia coli. J Bacteriol 191:909–921

    Article  PubMed  CAS  Google Scholar 

  • Reif HJ, Saedler H (1975) IS1 is involved in deletion formation in the gal region of E. coli K-12. Mol Gen Genet 137:17–28

    PubMed  CAS  Google Scholar 

  • Reynolds AE, Felton J, Wright A (1981) Insertion of DNA activates the cryptic bgl operon in Escherichia coli K-12. Nature 293:625–629

    Article  PubMed  CAS  Google Scholar 

  • Riehle MM, Bennett AF, Long AD (2001) Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci USA 98:525–530

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H, Snow ET, Bhat U, Loechler EL (1992) An Escherichia coli plasmid-based, mutational system in which supF mutants are selectable: insertion elements dominate the spontaneous spectra. Mutat Res 270:219–231

    PubMed  CAS  Google Scholar 

  • Rohmer L, Fong C, Abmayr S, Wasnick M, Larson Freeman TJ, Radey M et al (2007) Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 8:R102

    Article  PubMed  Google Scholar 

  • Saedler H, Reif HJ, Hu S, Davidson N (1974) IS2, a genetic element for turn-off and turn-on of gene activity in Escherichia coli. Mol Gen Genet 132:265–289

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sawyer SA, Dykhuisen DE, DuBose RF, Green L, Mutangadura-Mhlanga T, Wolczyk DF, Hartl DL (1987) Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics 115:51–63

    PubMed  CAS  Google Scholar 

  • Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M (2000) Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156:477–488

    PubMed  CAS  Google Scholar 

  • Schneider D, Duperchy E, Depeyrot J, Coursange E, Lenski RE, Blot M (2002) Genomic comparisons among Escherichia coli strains B, K-12, and O157:H7 using IS elements as molecular markers. BMC Microbiol 2:18

    Article  PubMed  Google Scholar 

  • Siguier P, Filée J, Chandler M (2006) Insertion sequences in prokaryotic genomes. Curr Opin Microbiol 9:526–531

    Article  PubMed  CAS  Google Scholar 

  • Sleight SC, Orlic C, Schneider D, Lenski RE (2008) Genetic basis of evolutionary adaptation by Escherichia coli to stressful cycles of freezing, thawing and growth. Genetics 180:431–443

    Article  PubMed  Google Scholar 

  • Sniegowski PD, Gerrish PJ, Lenski RE (1997) Evolution of high mutation rates in experimental populations of Escherichia coli. Nature 387:703–705

    Article  PubMed  CAS  Google Scholar 

  • Song H, Hwang J, Yi H, Ulrich RL, Yu Y, Nierman WC, Kim HS (2010) The early stage of bacterial genome-reductive evolution in the host. PLoS Pathog 6(5):e1000922

    Article  PubMed  Google Scholar 

  • Stoebel DM, Dorman CJ (2010) The effect of mobile element IS10 on experimental regulatory evolution in Escherichia coli. Mol Biol Evol 27:2105–2112

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Dennis JJ (2009) A novel insertion sequence derepresses efflux pump expression and preadapts Pseudomonas putida S12 for extreme solvent stress. J Bacteriol 191:6773–6777

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Berg OG, Roth JR, Andersson DI (2009) Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics 182:1183–1195

    Article  PubMed  CAS  Google Scholar 

  • Treves DS, Manning S, Adams J (1998) Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol 15:789–797

    PubMed  CAS  Google Scholar 

  • Wang L, Spira B, Zhou Z, Feng L, Maharjan RP, Li X, Li F, McKenzie C, Reeves PR, Ferenci T (2010) Divergence involving global regulatory gene mutations in an Escherichia coli population evolving under phosphate limitation. Genome Biol Evol 2:478–487

    Article  PubMed  Google Scholar 

  • Warren RM, Victor TC, Streicher EM, Richardson M, van der Spuy GD, Johnson R, Chihota VN, Locht C, Supply P, van Helden PD (2004) Clonal expansion of a globally disseminated lineage of Mycobacterium tuberculosis with low IS6110 copy numbers. J Clin Microbiol 42:5774–5782

    Article  PubMed  CAS  Google Scholar 

  • Whiteway J, Koziarz P, Veall J, Sandhu N, Kumar P, Hoecher B, Lambert IB (1998) Oxygen-insensitive nitroreductases: analyses of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J Bacteriol 180:5529–5539

    PubMed  CAS  Google Scholar 

  • Zhang Z, Saier MH Jr (2009) A novel mechanism of transposon-mediated gene activation. PLoS Genet 5(10):e1000689

    Article  PubMed  Google Scholar 

  • Zhang Z, Yen MR, Saier MH Jr (2010) Precise excision of IS5 from the intergenic region between the fucPIK and the fucAO operons and mutational control of fucPIK operon expression in Escherichia coli. J Bacteriol 192:2013–2019

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Olman V, Xu Y (2008) Insertion sequences show diverse recent activities in cyanobacteria and archea. BMC Genomics 9:36

    Article  PubMed  Google Scholar 

  • Zinser ER, Schneider D, Blot M, Kolter R (2003) Bacterial evolution through the selective loss of beneficial genes: trade-offs in expression involving two loci. Genetics 164:1271–1277

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Thu Betteridge for technical support. This work was supported by the French Centre National de la Recherche Scientifique (CNRS), the University Joseph Fourier Grenoble, and the grant ANR-08-BLAN-0283-01 from the french Agence Nationale de la Recherche (ANR) program Blanc to D.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Schneider.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Supplementary material 2 (XLS 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaffé, J., McKenzie, C., Maharjan, R.P. et al. Insertion Sequence-Driven Evolution of Escherichia coli in Chemostats. J Mol Evol 72, 398–412 (2011). https://doi.org/10.1007/s00239-011-9439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-011-9439-2

Keywords

Navigation