Skip to main content
Log in

Artificial Gene Amplification in Escherichia coli Reveals Numerous Determinants for Resistance to Metal Toxicity

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

When organisms are subjected to environmental challenges, including growth inhibitors and toxins, evolution often selects for the duplication of endogenous genes, whose overexpression can provide a selective advantage. Such events occur both in natural environments and in clinical settings. Microbial cells—with their large populations and short generation times—frequently evolve resistance to a range of antimicrobials. While microbial resistance to antibiotic drugs is well documented, less attention has been given to the genetic elements responsible for resistance to metal toxicity. To assess which overexpressed genes can endow gram-negative bacteria with resistance to metal toxicity, we transformed a collection of plasmids overexpressing all E. coli open reading frames (ORFs) into naive cells, and selected for survival in toxic concentrations of six transition metals: Cd, Co, Cu, Ni, Ag, Zn. These selections identified 48 hits. In each of these hits, the overexpression of an endogenous E. coli gene provided a selective advantage in the presence of at least one of the toxic metals. Surprisingly, the majority of these cases (28/48) were not previously known to function in metal resistance or homeostasis. These findings highlight the diverse mechanisms that biological systems can deploy to adapt to environments containing toxic concentrations of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam M, Imran M (2014) Multiple antibiotic resistances in metal tolerant E. coli from hospital waste water. Bioinformation 10(5):267–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Anes J, McCusker MP, Fanning S, Martins M. 2015. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol 6:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:1

    Article  Google Scholar 

  • Brocklehurst KR, Morby AP (2000) Metal-ion tolerance in Escherichia coli: analysis of transcriptional profiles by gene-array technology. Microbiology 146:2277–2282

    Article  CAS  PubMed  Google Scholar 

  • Ciampi MS (2006) Rho-dependent terminators and transcription termination. Microbiology 152(9):2515–2528

    Article  CAS  PubMed  Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Digianantonio KM, Hecht MH (2016) A protein constructed de novo enables cell growth by altering gene regulation. Proc Natl Acad Sci USA 113:2400–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Digianantonio KM, Korolev M, Hecht MH (2017) A non-natural protein rescues cells deleted for a key enzyme in central metabolism. ACS Synth Biol 6:694–700

    Article  CAS  PubMed  Google Scholar 

  • Fisher MA, McKinley KL, Bradley LH, Viola SR, Hecht MH (2011) De novo designed proteins from a library of artificial sequences function in Escherichia coli and enable cell growth. PLoS ONE 6(1):e15364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Salt DE (2005) Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense. Appl Environ Microbiol 71(12):8627–8633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grass G, Fan B, Rosen BP, Franke S, Nies DH, Rensing C (2001) ZitB (YbgR), a Member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J Bacteriol 183(15):4664–4667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77(5):1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Graves JL Jr, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, Barrick JE (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Herron MD, Doebeli M. 2013. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol 11(2):e1001490. https://doi.org/10.1371/journal.pbio.1001490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobman JL, Crossman LC. 2015. Bacterial antimicrobial metal ion resistance. J Med Microbiol 64(5):471–497

    Article  CAS  PubMed  Google Scholar 

  • Hoegler KJ, Hecht MH (2016) A de novo protein confers copper resistance in Escherichia coli. Protein Sci 25:1249–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes D, Andersson DI (2015) Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat Rev Genet 16:459–471

    Article  CAS  PubMed  Google Scholar 

  • Jensen RA (1976) Enzyme recruitment in evolution of new function. Ann Rev Microbiol 30(1):409–425

    Article  CAS  Google Scholar 

  • Jerez CA. (2013) Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic archaeon Sulfolobus metallicus. Archaea 2013

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kacar B, Gaucher EA (2012) Towards the recapitulation of ancient history in the laboratory: combining synthetic biology with experimental evolution. Artif Life 13:11–18

    Google Scholar 

  • Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2006) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12(5):291–299

    Article  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    Article  CAS  PubMed  Google Scholar 

  • Levin BR, Baquero F, Johnsen PJ (2014) A model-guided analysis and perspective on the evolution and epidemiology of antibiotic resistance and its future. Curr Opin Microbiol 19:83–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Lok CN, Ho CM, Chen R, Tam PK, Chiu JF, Che CM (2008) Proteomic identification of the Cus system as a major determinant of constitutive Escherichia coli silver resistance of chromosomal origin. J Proteome Res 7(6):2351–2356

    Article  PubMed  Google Scholar 

  • Montealegre MC, Roh JH, Rae M, Davlieva MG, Singh KV, Shamoo Y, Murray BE (2017) Differential penicillin-binding protein 5 (PBP5) levels in the Enterococcus faecium clades with different levels of ampicillin resistance. Antimicrob Agents Chemother 61:e02034-16

    Article  PubMed  Google Scholar 

  • Näsvall J, Sun L, Roth JR, Andersson DI (2012) Real-time evolution of new genes by innovation, amplification, and divergence. Science 338(6105):384–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Nies DH, Silver S (2007) Molecular microbiology of heavy metals, Vol 6, Springer, Berlin, pp 118–142

    Book  Google Scholar 

  • Notebaart RA, Kintses B, Feist AM, Papp B (2018) Underground metabolism: network-level perspective and biotechnological potential. Curr Opin Biotechnol 49:108–114

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (2013) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Patrick WM, Quandt EM, Swartzlander DB, Matsumura I (2007) Multicopy suppression underpins metabolic evolvability. Mol Biol Evol 24(12):2716–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall CP, Gupta A, Jackson N, Busse D, O’Neill AJ (2015) Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother 70:1037–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soo VW, Hanson-Manful P, Patrick WM (2011) Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 108(4):1484–1489

    Article  Google Scholar 

  • Tajkarimi M, Rhinehardt K, Thomas M, Ewunkem JA, Campbell A, Boyd S, Turner D, Harrison SH, Graves JL (2017) Selection for ionic- confers silver nanoparticle resistance in Escherichia coli. JSM Nanotechnol Nanomed 5(1):1047

    Google Scholar 

Download references

Acknowledgements

We thank Wayne Patrick for generously gifting us an aliquot of his lab’s pooled ASKA collection. We also thank Shlomo Zarzhitsky for help with Fig. 2. This work was supported by the National Science Foundation, Grant Number: MCB-1409402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Hecht.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 480 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoegler, K.J., Hecht, M.H. Artificial Gene Amplification in Escherichia coli Reveals Numerous Determinants for Resistance to Metal Toxicity. J Mol Evol 86, 103–110 (2018). https://doi.org/10.1007/s00239-018-9830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-018-9830-3

Keywords

Navigation