Skip to main content
Log in

Examining the Cardiac NK-2 Genes in Early Heart Development

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The cardiac NK-2 transcription factors are the vertebrate relatives of the Drosophila tinman gene. Without the Drosophila tinman gene, fruit flies fail to form their heart (“dorsal vessel”), and mutations or altered expression of cardiac NK-2 genes may lead to abnormal heart formation in vertebrates. Although the cardiac NK-2 gene NKX2-5 is recognized as an important factor in cases of human congenital heart disease and heart development in vertebrates, the roles of the other cardiac NK-2 genes are less clear. This report reviews what is known about the cardiac NK-2 genes in cardiac development, comparing studies in several different model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akazawa H, Komuro I (2005) Cardiac transcription factor Csx/Nkx2–5: its role in cardiac development and diseases. Pharmacol Ther 107:252–268

    Article  CAS  PubMed  Google Scholar 

  2. Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Veenstra GJ (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17:425–434

    Article  CAS  PubMed  Google Scholar 

  3. Allen BG, Allen-Brady K, Weeks DL (2006) Reduction of XNkx2-10 expression leads to anterior defects and malformation of the embryonic heart. Mech Dev 123:719–729

    Article  CAS  PubMed  Google Scholar 

  4. Alsan BH, Schultheiss TM (2002) Regulation of avian cardiogenesis by Fgf8 signaling. Development 129:1935–1943

    CAS  PubMed  Google Scholar 

  5. Backs J, Olson EN (2006) Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98:15–24

    Article  CAS  PubMed  Google Scholar 

  6. Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, Seidman CE, Plowden J, Kugler JD (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573

    Article  CAS  PubMed  Google Scholar 

  7. Biben C, Harvey RP (1997) Homeodomain factor Nkx-2.5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 11:1357–1369

    Article  CAS  PubMed  Google Scholar 

  8. Brown CO III, Chi X, Garcia-Gras E, Shirai M, Feng XH, Schwartz RJ (2004) The cardiac determination factor, Nkx2–5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. J Biol Chem 279:10659–10669

    Article  CAS  PubMed  Google Scholar 

  9. Chen CY, Schwartz RJ (1995) Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J Biol Chem 270:15628–15633

    Article  CAS  PubMed  Google Scholar 

  10. Chen JN, Fishman MC (1996) Zebra fish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122:3809–3816

    CAS  PubMed  Google Scholar 

  11. Chen Y, Yuen WH, Fu J, Huang G, Melendez AJ, Ibrahim FB, Lu H, Cao X (2007) The mitochondrial respiratory chain controls intracellular calcium signaling and NFAT activity essential for heart formation in Xenopus laevis. Mol Cell Biol 27:6420–6432

    Article  CAS  PubMed  Google Scholar 

  12. Cleaver OB, Patterson KD, Krieg PA (1996) Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia. Development 122:3549–3556

    CAS  PubMed  Google Scholar 

  13. Cripps RM, Olson EN (2002) Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 246:14–28

    Article  CAS  PubMed  Google Scholar 

  14. Durocher D, Chen CY, Ardati A, Schwartz RJ, Nemer M (1996) The atrial natriuretic factor promoter is a downstream target for Nkx-2.5 in the myocardium. Mol Cell Biol 16:4648–4655

    CAS  PubMed  Google Scholar 

  15. Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M (1997) The cardiac transcription factors Nkx2–5 and GATA-4 are mutual cofactors. Embo J 16:5687–5696

    Article  CAS  PubMed  Google Scholar 

  16. Foley A, Mercola M (2004) Heart induction: embryology to cardiomyocyte regeneration. Trends Cardiovasc Med 14:121–125

    Article  CAS  PubMed  Google Scholar 

  17. Fu Y, Yan W, Mohun TJ, Evans SM (1998) Vertebrate tinman homologues XNkx2–3 and XNkx2–5 are required for heart formation in a functionally redundant manner. Development 125:4439–4449

    CAS  PubMed  Google Scholar 

  18. Grow MW, Krieg PA (1998) Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2–3 and XNkx2–5. Dev Biol 204:187–196

    Article  CAS  PubMed  Google Scholar 

  19. Habets PE, Moorman AF, Clout DE, van Roon MA, Lingbeek M, van Lohuizen M, Campione M, Christoffels VM (2002) Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 16:1234–1246

    Article  CAS  PubMed  Google Scholar 

  20. Harvey RP (1996) NK-2 homeobox genes and heart development. Dev Biol 178:203–216

    Article  CAS  PubMed  Google Scholar 

  21. Heathcote K, Braybrook C, Abushaban L, Guy M, Khetyar ME, Patton MA, Carter ND, Scambler PJ, Syrris P (2005) Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet 14:585–593

    Article  CAS  PubMed  Google Scholar 

  22. Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I (2001) Tbx5 associates with Nkx2–5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28:276–280

    Article  CAS  PubMed  Google Scholar 

  23. Inga A, Reamon-Buettner SM, Borlak J, Resnick MA (2005) Functional dissection of sequence-specific NKX2–5 DNA binding domain mutations associated with human heart septation defects using a yeast-based system. Hum Mol Genet 14:1965–1975

    Article  CAS  PubMed  Google Scholar 

  24. Kasahara H, Lee B, Schott JJ, Benson DW, Seidman JG, Seidman CE, Izumo S (2000) Loss of function and inhibitory effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease. J Clin Invest 106:299–308

    Article  CAS  PubMed  Google Scholar 

  25. Kasahara H, Usheva A, Ueyama T, Aoki H, Horikoshi N, Izumo S (2001) Characterization of homo- and heterodimerization of cardiac Csx/Nkx2.5 homeoprotein. J Biol Chem 276:4570–4580

    Article  CAS  PubMed  Google Scholar 

  26. Kim Y, Nirenberg M (1989) Drosophila NK-homeobox genes. Proc Natl Acad Sci U S A 86:7716–7720

    Article  CAS  PubMed  Google Scholar 

  27. Lien CL, McAnally J, Richardson JA, Olson EN (2002) Cardiac-specific activity of an Nkx2–5 enhancer requires an evolutionarily conserved Smad binding site. Dev Biol 244:257–266

    Article  CAS  PubMed  Google Scholar 

  28. Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:969

    CAS  PubMed  Google Scholar 

  29. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox gene Nkx2–5. Genes Dev 9:1654–1666

    Article  CAS  PubMed  Google Scholar 

  30. Newman CS, Krieg PA (1998) Tinman-related genes expressed during heart development in Xenopus. Dev Genet 22:230–238

    Article  CAS  PubMed  Google Scholar 

  31. Newman CS, Reecy J, Grow MW, Ni K, Boettger T, Kessel M, Schwartz RJ, Krieg PA (2000) Transient cardiac expression of the tinman-family homeobox gene, XNkx2–10. Mech Dev 91:369–373

    Article  CAS  PubMed  Google Scholar 

  32. Pabst O, Zweigerdt R, Arnold HH (1999) Targeted disruption of the homeobox transcription factor Nkx2–3 in mice results in postnatal lethality and abnormal development of small intestine and spleen. Development 126:2215–2225

    CAS  PubMed  Google Scholar 

  33. Patterson KD, Cleaver O, Gerber WV, Grow MW, Newman CS, Krieg PA (1998) Homeobox genes in cardiovascular development. Curr Top Dev Biol 40:1–44

    Article  CAS  PubMed  Google Scholar 

  34. Peterkin T, Gibson A, Patient R (2003) GATA-6 maintains BMP-4 and Nkx2 expression during cardiomyocyte precursor maturation. Embo J 22:4260–4273

    Article  CAS  PubMed  Google Scholar 

  35. Riazi AM, Takeuchi JK, Hornberger LK, Zaidi SH, Amini F, Coles J, Bruneau BG, Van Arsdell GS (2009) NKX2–5 regulates the expression of beta-catenin and GATA4 in ventricular myocytes. PLoS One 4:e5698

    Article  PubMed  Google Scholar 

  36. Sepulveda JL, Belaguli N, Nigam V, Chen CY, Nemer M, Schwartz RJ (1998) GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol 18:3405–3415

    CAS  PubMed  Google Scholar 

  37. Sparrow DB, Cai C, Kotecha S, Latinkic B, Cooper B, Towers N, Evans SM, Mohun TJ (2000) Regulation of the tinman homologues in Xenopus embryos. Dev Biol 227:65–79

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka M, Schinke M, Liao HS, Yamasaki N, Izumo S (2001) Nkx2.5 and Nkx2.6, homologs of Drosophila tinman, are required for development of the pharynx. Mol Cell Biol 21:4391–4398

    Article  CAS  PubMed  Google Scholar 

  39. Tu CT, Yang TC, Tsai HJ (2009) Nkx2.7 and Nkx2.5 function redundantly and are required for cardiac morphogenesis of zebra fish embryos. PLoS One 4:e4249

    Article  PubMed  Google Scholar 

  40. Yamazaki K, Takahashi A, Takazoe M, Kubo M, Onouchi Y, Fujino A, Kamatani N, Nakamura Y, Hata A (2009) Positive association of genetic variants in the upstream region of NKX2–3 with Crohn’s disease in Japanese patients. Gut 58:228–232

    Article  CAS  PubMed  Google Scholar 

  41. Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, Young RA (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39:1512–1516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the members of their laboratories and the American Heart Association, the National Institutes of Health, and the Netherlands Organization for Scientific Research (NWO-ALW VIDI) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Weeks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartlett, H., Veenstra, G.J.C. & Weeks, D.L. Examining the Cardiac NK-2 Genes in Early Heart Development. Pediatr Cardiol 31, 335–341 (2010). https://doi.org/10.1007/s00246-009-9605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-009-9605-0

Keywords

Navigation