Skip to main content
Log in

Genomic Analysis of Freshwater Cyanophage Pf-WMP3 Infecting Cyanobacterium Phormidium foveolarum: The Conserved Elements for a Phage

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Cyanophages are ecologically abundant, genetically diverse in aquatic environments, and affect the population and evolutionary trajectories of their hosts. After reporting the cyanophage Pf-WMP4 genome (Liu et al. in Virology 366:28–39, 2007), we hereby present a related cyanophage, Pf-WMP3, which also infects the freshwater cyanobacterium Phormidium foveolarum. The Pf-WMP3 genome contains 43,249 bp with 234 bp direct terminal repeats. The overall genome organization and core genes of the two phages are comparable to those of the T7 supergroup phages. Compared with Pf-WMP4, cyanophage Pf-WMP3 has diverged extensively at the DNA level; however, they are closely related at the protein level and genome architecture. The left arm genes for the two phages, which mainly encode the DNA replication machinery, are not conserved in the gene order. Whereas the right arm genes of the two phages coding for structural proteins show high similarity in amino acid sequences and modular architecture, indicating that they have retained similar development strategies. The differences in similarity levels between the left and right arm genes suggest that the structural genes are the most conserved elements for a phage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    Article  PubMed  CAS  Google Scholar 

  2. Paul JH, Sullivan MB (2005) Marine phage genomics: what have we learned. Curr Opin Biotechnol 16:299–307

    Article  PubMed  CAS  Google Scholar 

  3. Bailey S, Clokie MR, Millard A, Mann NH (2004) Cyanophage infection and photoinhibition in marine cyanobacteria. Res Microbiol 155:720–725

    Article  PubMed  CAS  Google Scholar 

  4. Sullivan MB, Waterbury JB, Chisholm SW (2003) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424:1047–1051

    Article  PubMed  CAS  Google Scholar 

  5. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  PubMed  CAS  Google Scholar 

  6. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci U S A 96:2192–2197

    Article  PubMed  CAS  Google Scholar 

  7. Mann NH (2003) Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol Rev 27:17–34

    Article  PubMed  CAS  Google Scholar 

  8. Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, Nagasaki K (2006) Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 72:1239–1247

    Article  PubMed  CAS  Google Scholar 

  9. Dorigo U, Jacquet S, Humbert JF (2004) Cyanophage diversity, inferred from g20 gene analyses, in the largest natural lake in France, Lake Bourget. Appl Environ Microbiol 70:1017–1022

    Article  PubMed  CAS  Google Scholar 

  10. Short CM, Suttle CA (2005) Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol 71:480–486

    Article  PubMed  CAS  Google Scholar 

  11. Gons HJ, Ebert J, Hoogveld HL, van den Hove L, Pel R, Takkenberg W, Woldringh CJ (2002) Observations on cyanobacterial population collapse in eutrophic lake water. Antonie Van Leeuwenhoek 81:319–326

    Article  PubMed  CAS  Google Scholar 

  12. Lu J, Chen F, Hodson RE (2001) Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol 67:3285–3290

    Article  PubMed  CAS  Google Scholar 

  13. Zhong Y, Chen F, Wilhelm SW, Poorvin L, Hodson RE (2002) Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl Environ Microbiol 68:1576–1584

    Article  PubMed  CAS  Google Scholar 

  14. Liu X, Shi M, Kong S, Gao Y, An C (2007) Cyanophage Pf-WMP4, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolarum: complete genome sequence and DNA translocation. Virology 366:28–39

    Article  PubMed  CAS  Google Scholar 

  15. Chen F, Lu J (2002) Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol 68:2589–2594

    Article  PubMed  CAS  Google Scholar 

  16. Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3:e144

    Article  PubMed  CAS  Google Scholar 

  17. Mann NH, Clokie MR, Millard A, Cook A, Wilson WH, Wheatley PJ, Letarov A, Krisch HM (2005) The genome of S-PM2, a “photosynthetic” T4-type bacteriophage that infects marine Synechococcus strains. J Bacteriol 187:3188–3200

    Article  PubMed  CAS  Google Scholar 

  18. Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF, King J, Hatfull GF, Lawrence JG, Hendrix RW (2007) Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol 9:1675–1695

    Article  PubMed  CAS  Google Scholar 

  19. Hardies SC, Comeau AM, Serwer P, Suttle CA (2003) The complete sequence of marine bacteriophage VpV262 infecting Vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment. Virology 310:359–371

    PubMed  CAS  Google Scholar 

  20. Rohwer F, Segall A, Steward G, Seguritan V, Breitbart M, Wolven F, Azam F (2000) The complete genomic sequence of the marine phage roseophage SIO1 shares homology with nonmarine phages. Limnol Oceanogr 45:408–418

    Article  CAS  Google Scholar 

  21. Scholl D, Kieleczawa J, Kemp P, Rush J, Richardson CC, Merril C, Adhya S, Molineux IJ (2004) Genomic analysis of bacteriophages SP6 and K1–5, an estranged subgroup of the T7 supergroup. J Mol Biol 335:1151–1171

    Article  PubMed  CAS  Google Scholar 

  22. Tan Y, Zhang K, Rao X, Jin X, Huang J, Zhu J, Chen Z, Hu X, Shen X, Wang L, Hu F (2007) Whole genome sequencing of a novel temperate bacteriophage of P. aeruginosa: evidence of tRNA gene mediating integration of the phage genome into the host bacterial chromosome. Cell Microbiol 9:479–491

    Article  PubMed  CAS  Google Scholar 

  23. Lavigne R, Burkal’tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G (2003) The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:49–59

    Article  PubMed  CAS  Google Scholar 

  24. Ceyssens PJ, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, Volckaert G (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the phiKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931

    Article  PubMed  CAS  Google Scholar 

  25. Botstein D (1980) A theory of modular evolution for bacteriophages. Ann N Y Acad Sci 354:484–490

    Article  PubMed  CAS  Google Scholar 

  26. Hendrix RW, Hatfull GF, Smith MC (2003) Bacteriophages with tails: chasing their origins and evolution. Res Microbiol 154:253–257

    Article  PubMed  CAS  Google Scholar 

  27. Silander OK, Weinreich DM, Wright KM, O’Keefe KJ, Rang CU, Turner PE, Chao L (2005) Widespread genetic exchange among terrestrial bacteriophages. Proc Natl Acad Sci U S A 102:19009–19014

    Article  PubMed  CAS  Google Scholar 

  28. Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–508

    Article  PubMed  CAS  Google Scholar 

  29. Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  30. Wilson WH, Joint IR, Carr NG, Mann NH (1993) Isolation and molecular characterization of five cyanophages propagated on Synechococcus sp. strain WH7803. Appl Environ Microbiol 59:3736–3742

    PubMed  CAS  Google Scholar 

  31. Demuth J, Neve H, Witzel KP (1993) Direct electron microscopy study on the morphological diversity of bacteriophage populations in lake Plusssee. Appl Environ Microbiol 59:3378–3384

    PubMed  CAS  Google Scholar 

  32. Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci U S A 101:11013–11018

    Article  PubMed  CAS  Google Scholar 

  33. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arobidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  34. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618

    Article  PubMed  CAS  Google Scholar 

  35. Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL (2000) Prediction of transcription terminators in bacterial genomes. J Mol Biol 301:27–33

    Article  PubMed  CAS  Google Scholar 

  36. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  Google Scholar 

  37. McGuffin LJ, Bryson K, Jones DT (2002) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  Google Scholar 

  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  39. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  40. Molineux IJ (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol Microbiol 40:1–8

    Article  PubMed  CAS  Google Scholar 

  41. Moak M, Molineux IJ (2004) Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol 51:1169–1183

    Article  PubMed  CAS  Google Scholar 

  42. Chen Z, Schneider TD (2005) Information theory based T7-like promoter models: classification of bacteriophages and differential evolution of promoters and their polymerases. Nucleic Acids Res 33:6172–6187

    Article  PubMed  CAS  Google Scholar 

  43. Chen Z, Schneider TD (2006) Comparative analysis of tandem T7-like promoter containing regions in enterobacterial genomes reveals a novel group of genetic islands. Nucleic Acids Res 34:1133–1147

    Article  PubMed  CAS  Google Scholar 

  44. Israel V (1978) A model for the adsorption of phage P22 to Salmonella typhimurium. J Gen Virol 40:669–673

    Article  PubMed  CAS  Google Scholar 

  45. Dunn JJ, Studier FW (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 166:477–535

    Article  PubMed  CAS  Google Scholar 

  46. Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WR Jr, Hendrix RW, Hatfull GF (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182

    Article  PubMed  CAS  Google Scholar 

  47. Chan LY, Kosuri S, Endy D (2005) Refactoring bacteriophage T7. Mol Syst Biol 1:2005.0018 DOI 10.1038/msb4100025

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our research was supported by the State 863 High Technology R&D Program (grant nos. 2006AA06Z341 and 2004AA214072) and the Beijing Natural Science Foundation (grant no. 5062020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengcai An.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Host-like promoter elements of phages in the T7 supergroup (DOC 75 kb)

Figure S1

Secondary structure prediction of structural proteins of T7 vs Pf-WMP4/3. Helix and beta strands were predicted using the PSIPRED protein secondary structure server [37]. Related proteins of T7 and Pf-WMP4/3 share considerable similarity (JPEG 345 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Kong, S., Shi, M. et al. Genomic Analysis of Freshwater Cyanophage Pf-WMP3 Infecting Cyanobacterium Phormidium foveolarum: The Conserved Elements for a Phage. Microb Ecol 56, 671–680 (2008). https://doi.org/10.1007/s00248-008-9386-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9386-7

Keywords

Navigation