Skip to main content

Advertisement

Log in

Microbial Community Diversity of Moonmilk Deposits at Ballynamintra Cave, Co. Waterford, Ireland

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Caves are extreme and specialised habitats for terrestrial life that sometimes contain moonmilk, a fine-grained paste-like secondary mineral deposit that is found in subterranean systems worldwide. While previous studies have investigated the possible role of microorganisms in moonmilk precipitation, the microbial community ecology of moonmilk deposits is poorly understood. Bacterial and fungal community structure associated with four spatially isolated microcrystalline, acicular calcite moonmilk deposits at Ballynamintra Cave (S. Ireland) was investigated during this study. Statistical analyses revealed significant differences in microbial activity, number of bacterial species, bacterial richness and diversity, and fungal diversity (Shannon's diversity) among the moonmilk sites over an area of approximately 2.5 m2. However, the number of fungal species and fungal community richness were unaffected by sampling location. SIMPER analysis revealed significant differences in bacterial and fungal community composition among the sampling sites. These data suggest that a rich assemblage of microorganisms exists associated with moonmilk, with some spatial diversity, which may reflect small-scale spatial differences in cave biogeochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic, London

    Google Scholar 

  2. Baldini JUL, McDermott F, Dl H, Richards DA, Clipson N (2008) Very high frequency and seasonal cave atmosphere PCO2 variability: implications for stalagmite growth and isotope-based paleoclimate records. Earth Planet Sci Lett 272:18–129

    Article  Google Scholar 

  3. Baldini JUL, Baldini L, McDermott F, Clipson N (2006) Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: evidence from Ballynamintra Cave, Ireland. J Cave Karst Stud 68:4–11

    CAS  Google Scholar 

  4. Barton HA, Northup D (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud 69:163–178

    Google Scholar 

  5. Barton HA, Taylor MR, Pace NR (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21:11–20

    Article  CAS  Google Scholar 

  6. Baskar S, Baskar R, Mauclaire L, McKenzie JA (2006) Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehadrun, India. Curr Sci 90:58–64

    CAS  Google Scholar 

  7. Benzerara K, Menguy N, Guyot F, Skouri F, Luca G, Barakat M, Heulin T (2004) Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouiniensis. Earth Planet Sci Lett 228:439–449

    Article  CAS  Google Scholar 

  8. Burford EP, Fomina M, Gadd G (2003) Fungal involvement in bioweathering and biotransformations of rocks and minerals. Mineralog Mag 67:1172–1155

    Article  Google Scholar 

  9. Cacchio P, Contento R, Ercole C, Cappuccio G, Preite-Martínez M, Lepidi A (2004) Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L'Aquila-Italy). Geomicrobiol J 21:497–509

    Article  CAS  Google Scholar 

  10. Cañaveras JC, Cuezva S, Sanchez-Moral S, Lario J, Laiz L, Gonzalez JM, Saiz-Jimenez C (2006) On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 93:27–32

    Article  PubMed  Google Scholar 

  11. Clarke J (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  12. Donachie SP, Foster JS, Brown MV (2007) Culture clash: challenging the dogma of microbial diversity—commentaries. ISME J 1:97–99

    Article  PubMed  Google Scholar 

  13. Curry MD, Boston PJ, Spilde MN, Baitchal JF, Campbell AR (2009) Cottonballs, a unique subaqueous moonmilk, and abundant moonmilk in Cataract Cave, Tongass National Forest, Alaska. Int J Speleol 2:111–128

    Google Scholar 

  14. Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:90–197

    Article  Google Scholar 

  15. Engel AS, Porter ML, Kinkle BK, Kane TC (2001) Ecological assessment and geological significance of microbial communities from cesspool cave. Va Geomicrobiol J 18:259–274

    Article  CAS  Google Scholar 

  16. Engel AS, Stern LA, Bennett PC (2004) Microbial contributions to cave formation: new insights into sulphuric acid speleogenesis. Geology 32:369–372

    Article  CAS  Google Scholar 

  17. Gadd GM (2004) Mycotransformation of organic and inorganic substrates. Mycologist 18:60–70

    Article  Google Scholar 

  18. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  19. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  20. Gleeson D, McDermott F, Clipson N (2004) Understanding microbially active biogeochemical environments. Adv Appl Microbiol 62:81–104

    Article  Google Scholar 

  21. Gradzinsky M, Szulc J, Smyk B (1997) Microbial agents of moonmilk calcification. Proceedings of the 12th International Congress on Speleology 1:275–278

    Google Scholar 

  22. Hill CA, Forti P (1997) Cave minerals of the world, 2nd edn. National Speleological Society, Huntsville, Alabama

    Google Scholar 

  23. Hutchens E (2009) Microbial selectivity on mineral surfaces: possible implications for weathering processes. Fungal Biology Reviews doi:10.1016/j.fbr.2009.10.002 in press.

  24. Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120

    Article  CAS  PubMed  Google Scholar 

  25. Kennedy N, Connolly J, Clipson N (2004) Impact of lime, nitrogen and plant species on fungal community structure in grassland microcosms. Environ Microbiol 7:780–788

    Article  Google Scholar 

  26. Kennedy NM, Gleeson DE, Connolly J, Clipson NJW (2005) Seasonal and management influences on bacterial community structure in an upland grassland soil. FEMS Microbiol Ecol 53:329–337

    Article  CAS  PubMed  Google Scholar 

  27. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika 29:1–27

    Article  Google Scholar 

  28. Laiz L, Groth I, Gonzalez I, Saiz-Jimenez C (1999) Microbiological study of the dripping waters in Altamira cave (Santilla del Mar, Spain). J Microbiol Meth 36:129–138

    Article  CAS  Google Scholar 

  29. Normand P, Ponsonnet C, Nesme X, Neyra M, Simonet P (1996) ITS analysis of prokaryotes. In: Akkermans AD, van Elsas JD, de Bruijn EI (eds) Molecular microbial ecology manual. Kluwer, Amsterdam

    Google Scholar 

  30. Northup DE, Lavoie KH (2001) Geomicrobiology of caves: a review. Geomicrobiology 18:199–222

    Article  CAS  Google Scholar 

  31. Northup DE, Barns SM, Yu LE, Spilde MN, Schelbe RT, Dano KE, Crossey LJ, Connolly CA, Boston PJ, Natvig DO, Dahm CN (2003) Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol 5:1071–1086

    Article  PubMed  Google Scholar 

  32. Rivadeneyra MA, Parraga J, Delgado G, Ramos-Cormenzana A, Delgado R (2004) Biomineralisation of carbonates by Nesterenkonia trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    Article  CAS  PubMed  Google Scholar 

  33. Scallon U, Liliensiek A, Clipson N, Connolly J (2008) Ribosort: a program for automated data preparation and exploratory analysis of microbial community fingerprints. Mol Ecol Notes 8:95–98

    Google Scholar 

  34. Sarbu SM, Kane TC, Kinkle BK (1994) Microbiological characterisation of a sulfide-rich groundwater ecosystem. Geomicrobiology 12:175–182

    Article  Google Scholar 

  35. Schabereiter-Gurtner C, Saiz-Jimenez C, Pinar G, Lubitz W, Rolleke S (2002) Altamira cave Paleolithic paintings harbour partly unknown bacterial communities. FEMS Microbiol Lett 211:7–11

    Article  CAS  PubMed  Google Scholar 

  36. Schabereiter-Gurtner C, Saiz-Jimenez C, Pinar G, Lubitz W, Rolleke S (2004) Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonin and La Garma). FEMS Microbiol Ecol 47:235–247

    Article  CAS  PubMed  Google Scholar 

  37. Sparks DL, Hlemke PA, Loeppert RH, Soltanpour PN, Tabatabai MN (eds) (1996) Methods of soil analysis: chemical methods, part 3. Soil Science Society of America, Madison

    Google Scholar 

  38. Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Ecol 254:34–40

    Article  CAS  Google Scholar 

  39. Torsvik V, Øvreås L (2001) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  Google Scholar 

  40. Vlasceanu L, Popa R, Kinkle BK (1997) Characterisation of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater system. Appl Environ Microbiol 63:3123–3127

    CAS  PubMed  Google Scholar 

  41. Walker JJ, Spear RJ, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014

    Article  CAS  PubMed  Google Scholar 

  42. Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Lotter H (2007) Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota. Appl Environ Microbiol 73:259–270

    Article  CAS  PubMed  Google Scholar 

  43. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgements

This study was supported by Enterprise Ireland through a Basic Research Grant Scheme Award (SC/2003/0118) to FMcD and NC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deirdre C. Rooney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rooney, D.C., Hutchens, E., Clipson, N. et al. Microbial Community Diversity of Moonmilk Deposits at Ballynamintra Cave, Co. Waterford, Ireland. Microb Ecol 60, 753–761 (2010). https://doi.org/10.1007/s00248-010-9693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9693-7

Keywords

Navigation