Skip to main content
Log in

Pioneer Microbial Communities of the Fimmvörðuháls Lava Flow, Eyjafjallajökull, Iceland

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Little is understood regarding the phylogeny and metabolic capabilities of the earliest colonists of volcanic rocks, yet these data are essential for understanding how life becomes established in and interacts with the planetary crust, ultimately contributing to critical zone processes and soil formation. Here, we report the use of molecular and culture-dependent methods to determine the composition of pioneer microbial communities colonising the basaltic Fimmvörðuháls lava flow at Eyjafjallajökull, Iceland, formed in 2010. Our data show that 3 to 5 months post eruption, the lava was colonised by a low-diversity microbial community dominated by Betaproteobacteria, primarily taxa related to non-phototrophic diazotrophs such as Herbaspirillum spp. and chemolithotrophs such as Thiobacillus. Although successfully cultured following enrichment, phototrophs were not abundant members of the Fimmvörðuháls communities, as revealed by molecular analysis, and phototrophy is therefore not likely to be a dominant biogeochemical process in these early successional basalt communities. These results contrast with older Icelandic lava of comparable mineralogy, in which phototrophs comprised a significant fraction of microbial communities, and the non-phototrophic community fractions were dominated by Acidobacteria and Actinobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berner RA (1993) Weathering and its effect on atmospheric CO2 over Phanerozoic time. Chem Geol 107:373–374. doi:10.1016/0009-2541(93)90212-2

    Article  Google Scholar 

  2. Gaillardet J, Dupre P, Louvat CJ, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers. Chem Geol 159:3–30. doi:10.1016/S0009-2541(99)00031-5

    Article  CAS  Google Scholar 

  3. Dessert C, Dupre B, Francois LM (2001) Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet Sc Lett 188:459–474. doi:10.1016/S0012-821X(01)00317-X

    Article  CAS  Google Scholar 

  4. Dessert C, Dupré B, Gaillardet J, François LM, Allègre CJ (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273. doi:10.1016/j.chemgeo.2002.10.001

    Article  CAS  Google Scholar 

  5. Bland W, Rolls D (2005) Weathering: an introduction to the scientific principles. Arnold, London

    Google Scholar 

  6. Dahlgren R, Shoji S, Nanzyo M (1993) Mineralogical characteristics of volcanic ash soils. In: Shoji S, Nanzyo M (eds) Volcanic ash soils genesis, properties, and utilization. Elsevier, Amsterdam, pp 101–143

    Chapter  Google Scholar 

  7. Vitousek PM, Ladefoged TN, Kirch PV, Hartshorn AS, Graves MW, Hotchkiss SC, Tuljapurkar S, Chadwick OA (2004) Soils, agriculture, and society in precontact Hawaii. Science 304:1665–1669. doi:10.1126/science.1099619

    Article  CAS  PubMed  Google Scholar 

  8. Belobrov VP, Ovechkin SV (2005) Soils and soil cover patterns of volcanic plateaus in Indochina. Eurasian Soil Sci 38:1065–1074

    Google Scholar 

  9. Ibekwe MA, Kennedy AC, Halvorson JJ, Yang C-H (2007) Characterization of developing microbial communities in Mount St. Helens pyroclastic substrate. Soil Biol Biochem 39:2496–2507. doi:10.1016/j.soilbio.2007.05.010

    Article  CAS  Google Scholar 

  10. Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Arp G, Dröse W, Thorsteinsson T, Tindle AG (2008) Bacterial colonization and weathering of terrestrial obsidian in Iceland. Geomicrobiol J 25:25–47. doi:10.1080/01490450701828982

    Article  CAS  Google Scholar 

  11. Gomez-Alvarez V, King GM, Nüsslein K (2007) Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 60:60–73. doi:10.1111/j.1574-6941.2006.00253.x

    Article  CAS  PubMed  Google Scholar 

  12. Kelly L, Cockell C, Piceno Y, Andersen G, Thorsteinsson T, Marteinsson V (2010) Bacterial diversity of weathered terrestrial Icelandic volcanic glasses. Microb Ecol 60:740–752. doi:10.1007/s00248-010-9684-8

    Article  PubMed  Google Scholar 

  13. Schwabe GH (1970) On the algal settlement in craters on Surtsey during summer 1968. Surtsey Research Progress Report, V:68-69

  14. Kristinsson H (1970) Report on the lichenological work on Surtsey and in Iceland. Surtsey Research Progress Report V:52

  15. Kristinsson H (1974) Lichen colonization in Surtsey 1971-1973. Surtsey Research Progress Report VII:9-16

  16. Schwabe GH, Behre K (1972) Algae on Surtsey in 1969-1970. Surtsey Research Progress Report VI:85-89

  17. Brock TD (1973) Primary colonization of Surtsey, with special reference to the blue-green algae. Oikos 24:239–243

    Article  Google Scholar 

  18. Englund B (1976) Nitrogen fixation by free-living microorganisms on the lava field of Heimaey, Iceland. Oikos 27:428–432. doi:10.2307/3543461

    Article  Google Scholar 

  19. King GM (2003) Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microb 69:4067–4075. doi:10.1128/AEM.69.7.4067-4075.2003

    Article  CAS  Google Scholar 

  20. Weber CF, King GM (2010) Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a succession gradient on a Hawaiian volcanic deposit. Environ Microbiol 12:1855–1867. doi:10.1111/j.1462-2920.2010.02190.x

    Article  CAS  PubMed  Google Scholar 

  21. Kelly LC, Cockell CS, Herrera-Belaroussi A, Piceno YM, Andersen G, DeSantis TZ, Brodie E, Thorsteinsson T, Marteinsson V, Poly F, LeRoux X (2011) Bacterial diversity of terrestrial crystalline volcanic rocks, Iceland. Microb Ecol 62:69–79. doi:10.1007/s00248-011-9864-1

    Article  CAS  PubMed  Google Scholar 

  22. Cockell CS, Olsson-Francis K, Herrera A, Kelly L, Thorsteinsson T, Marteinsson V (2009) Bacteria in weathered basaltic glass, Iceland. Geomicrobiol J 26:491–507. doi:10.1080/01490450903061101

    Article  CAS  Google Scholar 

  23. Sigmundsson F, Hreinsdóttir S, Hooper A, Árnadóttir T, Pedersen R, Roberts M, Óskarsson N, Auriac A, Decriem J, Einarsson P, Hensch M, Ófeigsson BG, Sturkell E, Sveinbjörnsson H, Feigl KL (2010) Intrusion triggering of the 2010 Eyjafjallajokull explosive eruption. Nature 468:426–430. doi:10.1038/nature09558

    Article  CAS  PubMed  Google Scholar 

  24. Edwards BR, Gudmundsson MT, Thordarson T, Magnússon E, Höskuldsson A, Oddsson B, Haklar JP (2012) Interactions between lava and snow/ice during the 2010 Fimmvörðuháls eruption, south-central Iceland. J Geophys Res 117, B04302. doi:10.1029/2011JB008985

    Google Scholar 

  25. Ramsey MH, Potts PJ, Webb PC, Watkins P, Watson JS, Coles BJ (1995) An objective assessment of analytical method precision: comparison of ICP-AES and XRF for the analysis of silicate rocks. Chem Geol 124:1–19. doi:10.1016/0009-2541(95)00020-M

    Article  CAS  Google Scholar 

  26. Watson JS (1996) Fast, simple method of powder pellet preparation for x-ray fluorescence analysis. X-Ray Spectrom 25:173–174

    Article  CAS  Google Scholar 

  27. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  28. Sattley WM, Madigan MT (2006) Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microb 72:5562–5568. doi:10.1128/AEM.00702-06

    Article  CAS  Google Scholar 

  29. Atlas RM (2004) Handbook of microbiological media. CRC Press, Florida

    Book  Google Scholar 

  30. Edwards U, Rogall T, Blöcker, Emde M, Böttger E (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nuc Acids Res 17:7843–7853. doi:10.1093/nar/17.19.7843

    Article  CAS  Google Scholar 

  31. Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P, Ritchie DA (1992) Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microb 58:3413–3416

    CAS  Google Scholar 

  32. Calvaruso C, Turpault MP, Leclerc E, Ranger J, Garbaye J, Uroz S, Frey-Klett P (2010) Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere. Appl Environ Microb 76:4780–4787. doi:10.1128/AEM.03040-09

    Article  CAS  Google Scholar 

  33. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microb 63:3327–3332

    Google Scholar 

  34. Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microb 66:4356–4360. doi:10.1128/AEM.66.10.4356-4360.2000

    Article  CAS  Google Scholar 

  35. Schwieger F, Tebbe C (1998) A new approach to utilize PCR-single-strand-conformation polymorphis for 16S rRNA gene-based microbial community analysis. Appl Environ Microb 64:4870–4876

    CAS  Google Scholar 

  36. Herrera A, Cockell CS (2007) Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction. J Microbiol Meth 70:1–12. doi:10.1016/j.mimet.2007.04.005

    Article  CAS  Google Scholar 

  37. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72:5069–5072. doi:10.1128/AEM.03006-05

    Article  CAS  Google Scholar 

  38. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  Google Scholar 

  39. Felsenstein J (1993) Phylip (phylogeny inference package) version 3.68

  40. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microb 67:4374–4376. doi:10.1128/AEM.67.9.4374-4376.2001

    Article  CAS  Google Scholar 

  41. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  CAS  Google Scholar 

  42. Tamura KD, Dudley J, Nei M, Kumar S (2007) Mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  43. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  44. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:783–791

    Google Scholar 

  45. Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic). Microb Ecol 50:396–407. doi:10.1007/s00248-005-0246-4

    Article  PubMed  Google Scholar 

  46. Nemergut D, Anderson S, Cleveland C, Martin A, Miller A, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122. doi:10.1007/s00248-006-9144-7

    Article  PubMed  Google Scholar 

  47. Henriksson LE, Henriksson E (1982) Concerning the biological nitrogen fixation on Surtsey. Surtsey Res Prog Rep IX:9–12

    Google Scholar 

  48. Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175. doi:10.2307/2937039

    Article  Google Scholar 

  49. Duc L, Noll M, Meier B, Bürgmann H, Zeyer J (2009) High diversity of diazotrophs in the forefield of a receding alpine glacier. Microb Ecol 57:179–190. doi:10.1007/s00248-008-9408-5

    Article  PubMed  Google Scholar 

  50. King GM (2007) Chemolithotrophic bacteria: distributions, functions and significance in volcanic environments. Microbes Environ 22:309–319. doi:10.1264/jsme2.22.309

    Article  Google Scholar 

  51. Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  52. Vaitilingom M, Deguillaume L, Vinatier V, Sancelme M, Amato P, Chaumerliac N, Delort AM (2013) Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc Natl Acad Sci U S A 110:559–564. doi:10.1073/pnas.1205743110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Lu H, Fujimura R, Sato Y, Nanba K, Kamijo T, Ohta H (2008) Characterization of Herbaspirillum- and Limnobacter-related strains isolated from young volcanic deposits in Miyake-Jima Island, Japan. Microbes Environ 23:66–72. doi:10.1264/jsme2.23.6

    Article  PubMed  Google Scholar 

  54. Heue KP, Brenninkmeijer CAM, Baker AK, Rauthe-Schöch A, Walter D, Wagner T, Hörmann C, Sihler H, Dix B, Frieß U, Platt U, Martinsson BG, van Velthoven PFJ, Zahn A, Ebinghaus R (2011) SO2 and BrO observation in the plume of Eyjafjallajökull volcano 2010: CARIBIC and GOME-2 retrievals. Atmos Chem Phys 11:2973–2989. doi:10.5194/acp-11-2973-2011

    Article  CAS  Google Scholar 

  55. Schütte UME, Abdo Z, Foster J, Ravel J, Bunge J, Solheim B, Forney LJ (2010) Bacterial diversity in a glacier foreland of the high Arctic. Mol Ecol 19:54–66. doi:10.1111/j.1365-294X.2009.04479.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Natural Environment Research Council grant (NERC; NE/I007695/1). LiDAR data were collected on NERC Airborne Research and Survey Facility flight UR10/02. The open source GMT (Wessel and Smith, 1991) and GRASS GIS (Neteler et al., 2012) software packages were used in LiDAR processing. We thank Stephen Summers (Dept. of Physical Sciences, Open University, UK) for the assistance with July sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura C. Kelly.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. 1

Principal component analysis (PCA) of bacterial communities based 16S rRNA gene clone libraries. PCA was performed on operational taxonomic unit (OTU) abundance data in MOTHUR. (GIF 102 kb)

High Resolution Image (TIFF 1,008 kb)

Table S2

(DOC 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, L.C., Cockell, C.S., Thorsteinsson, T. et al. Pioneer Microbial Communities of the Fimmvörðuháls Lava Flow, Eyjafjallajökull, Iceland. Microb Ecol 68, 504–518 (2014). https://doi.org/10.1007/s00248-014-0432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0432-3

Keywords

Navigation