Skip to main content

Advertisement

Log in

Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Order parameters from deuterium NMR are often used to validate or calibrate molecular dynamics simulations. This paper gives a short overview of the literature in which experimental order parameters from 2H NMR are compared to those calculated from MD simulations. The different ways in which order parameters from experiment are used to calibrate and validate simulations are reviewed. In the second part of this review, a case study of cholesterol in a DMPC bilayer is presented. It is concluded that the agreement between experimental data and simulation is favorable in the hydrophobic region of the membrane, for both the phospholipids and cholesterol. In the interfacial region the agreement is less satisfactory, probably because of the high polarity of this region which makes the correct computation of the electrostatics more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anézo C, de Vries AH et al (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107:9424–9433

    Google Scholar 

  • Anisimov VM, Lamoureux G et al (2005) Determination of electrostatic parameters for a polarizable force field based on the classical drude oscillator. J Chem Theory Comput 1:153–168

    Google Scholar 

  • Appelt C, Eisenmenger F et al (2005) Interaction of the antimicrobial peptide cyclo(RRWWRF) with membranes by molecular dynamics simulations. Biophys J 89:2296–2306

    Google Scholar 

  • Ash WL, Zlomislic MR et al (2004) Computer simulations of membrane proteins. Biochim Biophys Acta 1666:158–189

    Google Scholar 

  • Aussenac F, Laguerre M et al (2003) Detailed structure and dynamics of bicelle phospholipids using selectively deuterated and perdeuterated labels. 2H nmr and molecular mechanics study. Langmuir 19:10468–10479

    Google Scholar 

  • Bandyopadhyay S, Shelley JC et al (2001) Molecular dynamics study of the effect of surfactant on a biomembrane. J Phys Chem B 105:5979–5986

    Google Scholar 

  • Benz RW, Castro-Román F et al (2005) Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys J 88:805–817

    Google Scholar 

  • Berendsen HJC, Postma JPM et al (1981) Interaction models for water in relation to protein hydration. In: Pullman B (eds) Intermolecular forces, D. Reidel Publishing Company, Dordrecht, pp 331–342

    Google Scholar 

  • Berendsen HJC, Postma JPM et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    ADS  Google Scholar 

  • Berger O, Edholm O et al (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    Google Scholar 

  • Berkowitz ML, Bostick DL et al (2006) Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. Chem Rev 106:1527–1539

    Google Scholar 

  • Bloom M, Evans E et al (1991) Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys 24:293–397

    Google Scholar 

  • Böckmann RA, Hac A et al (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655

    Google Scholar 

  • Burnett LJ, Muller BH (1971) Deuteron quadrupole coupling constants in three solid deuterated paraffin hydrocarbons: C2D6, C4D10, C6D14. J Chem Phys 55:5829–5831

    ADS  Google Scholar 

  • Castro-Román F, Benz RW et al (2006) Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110:24157–24164

    Google Scholar 

  • Chandrasekhar I, Kastenholz M et al (2003) A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J 32:67–77

    Google Scholar 

  • Chapman D, Owens NF et al (1969) Mixed monolayers of phospholipids and cholesterol. Biochim Biophys Acta 183:458–465

    Google Scholar 

  • Chiu S, Jakobsson E et al (2001) Combined monte carlo and molecular dynamics simulation of hydrated lipid-cholesterol lipid bilayers at low cholesterol concentration. Biophys J 80:1104–1114

    Google Scholar 

  • Czub J, Baginski M (2006) Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol. Biophys J 90:2368–2382

    Google Scholar 

  • Darden T, York D et al (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    ADS  Google Scholar 

  • Dave PC, Tiburu EK et al (2004) Investigating structural changes in the lipid bilayer upon insertion of the transmembrane domain of the membrane-bound protein phospholamban utilizing 31P and 2H solid-state NMR spectroscopy. Biophys J 86:1564–1573

    Google Scholar 

  • Douliez JP, Léonard A et al (1995) Restatement of order parameters in biomembranes: calculation of C–C bond order parameters from C–D quadrupolar splittings. Biophys J 68:1727–1739

    Google Scholar 

  • Douliez JP, Ferrarini A et al (1998) On the relationship between C–C and C–D order parameters and its use for studying the conformation of lipid acyl chains in biomembranes. J Chem Phys 109:2513–2518

    ADS  Google Scholar 

  • Edholm O, Nagle JF (2005) Areas of molecules in membranes consisting of mixtures. Biophys J 89:1827–1832

    Google Scholar 

  • Egberts E, Marrink SJ et al (1994) Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J 22:423–436

    Google Scholar 

  • Essmann U, Perera L et al (1995) A smooth particle mesh ewald method. J Chem Phys 103:8577–8593

    ADS  Google Scholar 

  • Falck E, Patra M et al (2004) Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J 87:1076–1091

    Google Scholar 

  • Feller SE, Venable RM et al (1997) Computer simulation of a dppc phospholipid bilayer: structural changes as a function of molecular surface area. Langmuir 13:6555–6561

    Google Scholar 

  • Feller SE, Pastor RW (1999) Constant surface tension simulations of lipid bilayers: the sensitivity of surface areas and compressibilities. J Chem Phys 111:1281–1287

    ADS  Google Scholar 

  • Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opin Colloid Interface Sci 5:217–223

    Google Scholar 

  • Feller SE, Brown CA et al (2002) Nuclear overhauser enhancement spectroscopy cross-relaxation rates and ethanol distribution across membranes. Biophys J 82:1396–1404

    Google Scholar 

  • Greenwood AI, Tristram-Nagle S et al (2006) Partial molecular volumes of lipids and cholesterol. Chem Phys Lipids 143:1–10

    Google Scholar 

  • Heller H, Schaefer M et al (1993) Molecular dynamics simulations of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J Phys Chem 97:8343–8360

    Google Scholar 

  • Hénin J, Chipot C (2006) Hydrogen-bonding patterns of cholesterol in lipid membranes. Chem Phys Lett 425:329–335

    ADS  Google Scholar 

  • Henriksen J, Rowat AC et al (2006) Universal behavior of membranes with sterols. Biophys J 90:1639–1649

    Google Scholar 

  • Hess B, Bekker H et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comp Chem 18:1463–1472

    Google Scholar 

  • Hofsäß C, Lindahl E et al (2003) Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys J 84:2192–2206

    Google Scholar 

  • Högberg CJ, Lyubartsev AP (2006) A molecular dynamics investigation of the influence of hydration and temperature on structural and dynamical properties of a dimyristoylphosphatidylcholine bilayer. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110:14326–14336

    Google Scholar 

  • Husslein T, Newns DM et al (1998) Constant pressure and temperature molecular-dynamics simulation of the hydrated diphtanolphosphatidylcholine lipid bilayer. J Chem Phys 109:2826–2832

    ADS  Google Scholar 

  • Hyvønen MT, Kovanen PT (2005) Molecular dynamics simulations of unsaturated lipid bilayers: effects of varying the numbers of double bonds. Eur Biophys J 34:294–305

    Google Scholar 

  • Jensen MØ, Mouritsen OG (2004) Lipids do influence protein function—the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666:205–226

    Google Scholar 

  • Jensen MØ, Mouritsen OG et al (2004) Simulations of a membrane-anchored peptide: structure, dynamics, and influence on bilayer properties. Biophys J 86:3556–3575

    Google Scholar 

  • Kandasamy SK, Larson RG (2006a) Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. Biochim Biophys Acta 1758:1274–1284

    Google Scholar 

  • Kandasamy SK, Larson RG (2006b) Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: a systematic investigation of hydrophobic mismatch. Biophys J 90:2326–2343

    Google Scholar 

  • Koubi L, Tarek M et al (2000) Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calculations. Biophys J 78:800–811

    Google Scholar 

  • Lafleur M, Fine B et al (1989) Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys J 56:1037–1041

    Google Scholar 

  • Lafleur M, Cullis PR et al (1990) Modulation of the orientational order profile of the lipid acyl chain in the Lα phase. Eur Biophys J 19:55–62

    Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

    Google Scholar 

  • Lee AG (2005) How lipids and proteins interact in a membrane: a molecular approach. Mol BioSyst 1:203–212

    ADS  Google Scholar 

  • Lee BW, Faller R et al (2005) Sructural effects of small molecules on phospholipid bilayers investigated by molecular simulations. Fluid Phase Equilib 228–229:135–140

    Google Scholar 

  • Leekumjorn S, Sum AK (2006) Molecular simulation study of structural and dynamic properties of mixed dppc/dppe bilayers. Biophys J 90:3951–3965

    Google Scholar 

  • Léonard A, Escrive C et al (2001) Location of cholesterol in dmpc membranes. a comparative study by neutron diffraction and molecular mechanics simulation. Langmuir 17:2019–2030

    Google Scholar 

  • Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79:426–433

    Google Scholar 

  • Lindahl E, Hess B et al (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317. Internet: http://www.gromacs.org

    Google Scholar 

  • López Cascales J, Otero TF et al (2006) Model of an asymmetric dppc/dpps membrane: effect of asymmetry on the lipid properties. a molecular dynamics simulation study. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110:2358–2363

    Google Scholar 

  • Marrink S, Mark A (2001) Effect of undulations on surface tension in simulated bilayers. J Phys Chem B 105:6122–6127

    Google Scholar 

  • Marsan MP, Muller I et al (1999) Cholesterol orientation and dynamics in dimyristoylphosphatidylcholine bilayers: a solid state deuterium NMR analysis. Biophys J 76:351–359

    Google Scholar 

  • Marsh D (2003a) Lipid interactions with transmembrane proteins. Cell Mol Life Sci 60:1575–1580

    Google Scholar 

  • Marsh D (2003b) Lipid-binding proteins: structure of the phospholipid ligands. Protein Sci 12:2109–2117

    Google Scholar 

  • Marsh D, Páli T (2004) The protein-lipid interface: perspectives from magnetic resonance and crystal structures. Biochim Biophys Acta 1666:118–141

    Google Scholar 

  • McCabe MA, Wassall SR (1997) Rapid deconvolution of NMR powder spectra by weighted fast fourier transformation. Solid State Nucl Magn Reson 10:53–61

    Google Scholar 

  • Merz KM (1997) Molecular dynamics simulations of lipid bilayers. Curr Opin Struct Biol 7:511–517

    Google Scholar 

  • Milhaud J (2004) New insights into water-phospholipid model membrane interactions. Biochim Biophys Acta 1663:19–51

    Google Scholar 

  • Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39:1101–1113

    Google Scholar 

  • Mukhopadhyay P, Monticelli L et al (2004) Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. Biophys J 86:1601–1609

    Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Google Scholar 

  • Norberg J, Nilsson L (2003) Advances in biomolecular simulations: methodology and recent applications. Q Rev Biophys 36:257–306

    Google Scholar 

  • Ohvo-Rekilä H, Ramstedt B et al (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41:66–97

    Google Scholar 

  • Oldfield E, Chapman D et al (1971) Deuteron resonance: a novel approach to the study of hydrocarbon chain mobility in membrane systems. FEBS Lett 16:102–104

    Google Scholar 

  • Palmo K, Mannfors B et al (2003) Potential energy functions: from consistent force fields to spectroscopically determined polarizable force fields. Biopolymers 68:383–394

    Google Scholar 

  • Pandit SA, Bostick D et al (2003) Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl. Biophys J 84:3743–3750

    Google Scholar 

  • Pasenkiewicz-Gierula M, Murzyn K et al (2000) Molecular dynamics simulation studies of lipid bilayer systems. Acta Biochim Pol 47:601–611

    Google Scholar 

  • Pastor RW, Venable RM et al (1991) Model for the structure of the lipid bilayer. Proc Natl Acad Sci USA 88:892–896

    ADS  Google Scholar 

  • Patel S, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem 25:1–15

    Google Scholar 

  • Patra M, Karttunen M et al (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645

    Google Scholar 

  • Patra M, Karttunen M et al (2004) Lipid bilayers drive to a wrong lane in molecular dynamics simulations by subtle changes in long-range interactions. J Phys Chem B 108:4485–4494

    Google Scholar 

  • Patra M, Salonen E et al (2006) Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys J 90:1121–1135

    Google Scholar 

  • Petrache HI, Tu K et al (1999) Analysis of simulated NMR order parameters for lipid bilayer structure determination. Biophys J 76:2479–2487

    Google Scholar 

  • Petrache HI, Dodd SW et al (2000) Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys J 79:3172–3192

    Google Scholar 

  • Renault M, Réat V et al (2006) Giant vesicles as an efficient intermediate for 2H NMR analyses of proteoliposomes in water suspension and in oriented bilayers. C R Chimie 9:401–407

    Google Scholar 

  • Róg T, Pasenkiewicz-Gierula M (2006) Cholesterol effects on a mixed-chain phosphatidylcholine bilayer: a molecular dynamics simulation study. Biochimie 88:449–460

    Google Scholar 

  • Sachs JN, Nanda H et al (2004) Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: molecular dynamics simulations. Biophys J 86:3772–3782

    Google Scholar 

  • Scott HL (2002) Modeling the lipid component of membranes. Curr Opin Struct Biol 12:495–502

    Google Scholar 

  • Seelig J, Niederberger W (1974) Deuterium-labeled lipids as structural probes in liquid crystalline bilayers. a deuterium magnetic resonance study. J Am Chem Soc 96:2069–2072

    Google Scholar 

  • Seelig A, Seelig J (1974) The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845

    Google Scholar 

  • Seelig J (1977) Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys 10:353–418

    Google Scholar 

  • Shinoda W, Namiki N et al (1997) Molecular dynamics study of a lipid bilayer: convergence, structure, and long-time dynamics. J Chem Phys 106:5731–5743

    ADS  Google Scholar 

  • Smondyrev AM, Berkowitz ML (1999a) Molecular dynamics simulation of dppc bilayer in dmso. Biophys J 76:2472–2478

    Article  Google Scholar 

  • Smondyrev AM, Berkowitz ML (1999b) Molecular dynamics study of Sn-1 and Sn-2 chain conformations in dipalmitoylphosphatidylcholine membranes. J Chem Phys 110:3981–3985

    ADS  Google Scholar 

  • Smondyrev AM, Berkowitz ML (1999c) United atom force field for phospholipid membranes: Constant pressure molecular dynamics simulation of dipalmitoylphosphatidicholine/water system. J Comput Chem 20:531–545

    Google Scholar 

  • Soubias O, Jolibois F et al (2004) Understanding sterol-membrane interactions, part ii: complete 1h and 13c assignments by solid-state nmr spectroscopy and determination of the hydrogen-bonding partners of cholesterol in a lipid bilayer. Chemistry 10:6005–6014

    Google Scholar 

  • Van der Spoel D, Lindahl E et al (2005) GROMACS: fast, flexible and free. J Comput Chem 26:701–1719

    Google Scholar 

  • Sternin E, Zaraiskaya T et al (2006) Changes in molecular order across the lamellar-to-inverted hexagonal phase transition depend on the position of the double-bond in mono-unsaturated phospholipid dispersions. Chem Phys Lipids 140:98–108

    Google Scholar 

  • Stockton GW, Polnaszek CF et al (1976) Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. a deuterium nuclear magnetic resonance study of specifically labeled lipids. Biochemistry 15:954–966

    Google Scholar 

  • Suits F, Pitman MC et al (2005) Molecular dynamics investigation of the structural properties of phosphatidylethanolamine lipid bilayers. J Chem Phys 122:244714

    ADS  Google Scholar 

  • Sum AK, Faller R et al (2003) Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys J 85:2830–2844

    Google Scholar 

  • Sum AK, de Pablo JJ (2003) Molecular simulation study on the influence of dimethylsulfoxide on the structure of phospholipid bilayers. Biophys J 85:3636–3645

    Google Scholar 

  • Swart M, van Duijnen P (2006) DRF90: a polarizable force field. Mol Simul 32:471–484

    MATH  Google Scholar 

  • Takaoka Y, Pasenkiewicz-Gierula M et al (2000) Molecular dynamics generation of nonarbitrary membrane models reveals lipid orientational correlations. Biophys J 79:3118–3138

    Google Scholar 

  • Tang YZ, Chen WZ et al (1999) Constructing the suitable initial configuration of the membrane-protein system in molecular dynamics simulations. Eur Biophys J 28:478–488

    Google Scholar 

  • Tieleman DP, Marrink SJ et al (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    Google Scholar 

  • Tieleman DP, Biggin PC et al (2001) Simulation approaches to ion channel structure-function relationships. Q Rev Biophys 34:473–561

    Google Scholar 

  • Tieleman DP (2006) Computer simulations of transport through membranes: passive diffusion, pores, channels and transporters. Clin Exp Pharmacol Physiol 33:893–903

    Google Scholar 

  • Tobias DJ (2001) Electrostatics calculations: recent methodological advances and applications to membranes. Curr Opin Struct Biol 11:253–261

    Google Scholar 

  • Vogel A, Katzka CP et al (2005) Lipid modifications of a Ras peptide exhibit altered packing and mobility versus host membrane as detected by 2H solid-state NMR. J Am Chem Soc 127:12263–12272

    Google Scholar 

  • De Vries AH, Chandrasekhar I et al (2005) Molecular dynamics simulations of phospholipid bilayers: Influence of artificial periodicity, system size, and simulation time. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 109:11643–11652

    Google Scholar 

  • Wohlert J, Edholm O (2006) Dynamics in atomistic simulations of phospholipid membranes: nuclear magnetic resonance relaxation rates and lateral diffusion. J Chem Phys 125:204703

    ADS  Google Scholar 

  • Zaraiskaya T, Jeffrey KR (2005) Molecular dynamics simulations and 2H NMR study of the GalCer/dppg lipid bilayer. Biophys J 88:4017–4031

    Google Scholar 

Download references

Acknowledgments

L.S. Vermeer wishes to acknowledge financial support from the European Marie Curie program (BIOMEM). The 2H NMR spectra presented in the case study were recorded on spectrometers financed with the help of European Structural funds, Région Midi-Pyrenées and CNRS. The authors would like to thank Ira Tremmel for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Czaplicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermeer, L.S., de Groot, B.L., Réat, V. et al. Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J 36, 919–931 (2007). https://doi.org/10.1007/s00249-007-0192-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0192-9

Keywords

Navigation