Skip to main content
Log in

Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Here we report on a method that extends the study of the mechanical behavior of single proteins to the low force regime of optical tweezers. This experimental approach relies on the use of DNA handles to specifically attach the protein to polystyrene beads and minimize the non-specific interactions between the tethering surfaces. The handles can be attached to any exposed pair of cysteine residues. Handles of different lengths were employed to mechanically manipulate both monomeric and polymeric proteins. The low spring constant of the optical tweezers enabled us to monitor directly refolding events and fluctuations between different molecular structures in quasi-equilibrium conditions. This approach, which has already yielded important results on the refolding process of the protein RNase H (Cecconi et al. in Science 309: 2057–2060, 2005), appears robust and widely applicable to any protein engineered to contain a pair of reactive cysteine residues. It represents a new strategy to study protein folding at the single molecule level, and should be applicable to a range of problems requiring tethering of protein molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscope

RNase H:

E. coli ribonuclease HI

DTDP:

2,2′-Dithiodipyridine

DTT:

Dithiothreitol

RT:

Room temperature

GdmCl:

Guanidinium chloride

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

HPLC:

High performance liquid chromatography

CD:

Circular dichroism

References

  • Berkemeier F, Schlierf M, Rief M (2006) Mechanically controlled preparation of protein intermediates in single molecule experiments. Phys Status Solidi a-Appl Mater Sci 203:3492–3495

    Article  ADS  Google Scholar 

  • Best RB, Li B, Steward A, Daggett V, Clarke J (2001) Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys J 81:2344–2356

    Google Scholar 

  • Brockwell DJ, Paci E, Zinober RC, Beddard GS, Olmsted PD, Smith DA, Perham RN, Radford SE (2003) Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nat Struct Biol 10:731–737

    Article  Google Scholar 

  • Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748

    Article  Google Scholar 

  • Bustamante C, Rivetti C, Keller DJ (1997) Scanning force microscopy under aqueous solutions. Curr Opin Struct Biol 7:709–716

    Article  Google Scholar 

  • Carrion-Vazquez M, Li H, Lu H, Marszalek PE, Oberhauser AF, Fernandez JM (2003) The mechanical stability of ubiquitin is linkage dependent. Nat Struct Biol 10:738–743

    Article  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96:3694–3699

    Article  ADS  Google Scholar 

  • Cecconi C, Shank EA, Bustamante C, Marqusee S (2005) Direct observation of the three-state folding of a single protein molecule. Science 309:2057–2060

    Article  ADS  Google Scholar 

  • Dabora JM, Marqusee S (1994) Equilibrium unfolding of Escherichia coli ribonuclease H: characterization of a partially folded state. Protein Sci 3:1401–1408

    Google Scholar 

  • Dietz H, Rief M (2006) Protein structure by mechanical triangulation. Proc Natl Acad Sci USA 103:1244–1247

    Article  ADS  Google Scholar 

  • Dietz H, Berkemeier F, Bertz M, Rief M (2006a) Anisotropic deformation response of single protein molecules. Proc Natl Acad Sci USA 103:12724–12728

    Article  ADS  Google Scholar 

  • Dietz H, Bertz M, Schlierf M, Berkemeier F, Bornschlogl T, Junker JP, Rief M (2006b) Cysteine engineering of polyproteins for single-molecule force spectroscopy. Nat Protoc 1:80–84

    Article  Google Scholar 

  • Forman JR, Clarke J (2007) Mechanical unfolding of proteins: insights into biology, structure and folding. Curr Opin Struct Biol 17:58–66

    Article  Google Scholar 

  • Garcia-Manyes S, Brujic J, Badilla CL, Fernandez JM (2007) Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin. Biophys J 93:2436–2446

    Article  Google Scholar 

  • Graham GJ, Maio JJ (1992) A rapid and reliable method to create tandem arrays of short DNA sequences. Biotechniques 13:780–789

    Google Scholar 

  • Grassetti DR, Murray JF Jr (1967) Determination of sulfhydryl groups with 2,2′- or 4,4′-dithiodipyridine. Arch Biochem Biophys 119:41–49

    Article  Google Scholar 

  • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. Faseb J 20:811–827

    Article  Google Scholar 

  • Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29:364–370

    Article  Google Scholar 

  • Kellermayer MS, Smith S, Bustamante C, Granzier HL (2000) Mechanical manipulation of single titin molecules with laser tweezers. Adv Exp Med Biol 481:111–126 discussion 127–118

    Google Scholar 

  • Lee G, Abdi K, Jiang Y, Michaely P, Bennett V, Marszalek PE (2006) Nanospring behaviour of ankyrin repeats. Nature 440:246–249

    Article  ADS  Google Scholar 

  • Llinas M, Marqusee S (1998) Subdomain interactions as a determinant in the folding and stability of T4 lysozyme. Protein Sci 7:96–104

    Article  Google Scholar 

  • Manosas M, Wen JD, Li PTX, Smith SB, Bustamante C, Tinoco I, Ritort F (2007) Force unfolding kinetics of RNA using optical tweezers. II. Modeling experiments. Biophys J 92:3010–3021

    Article  Google Scholar 

  • Matouschek A (2003) Protein unfolding—an important process in vivo? Curr Opin Struct Biol 13:98–109

    Article  Google Scholar 

  • Pedersen AO, Jacobsen J (1980) Reactivity of the thiol group in human and bovine albumin at pH 3–9, as measured by exchange with 2,2′-dithiodipyridine. Eur J Biochem 106:291–295

    Article  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  Google Scholar 

  • Riener CK, Kada G, Gruber HJ (2002) Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Anal Bioanal Chem 373:266–276

    Article  Google Scholar 

  • Robic S, Berger JM, Marqusee S (2002) Contributions of folding cores to the thermostabilities of two ribonucleases H. Protein Sci 11:381–389

    Article  Google Scholar 

  • Rounsevell R, Forman JR, Clarke J (2004) Atomic force microscopy: mechanical unfolding of proteins. Methods 34:100–111

    Article  Google Scholar 

  • Seol Y, Li J, Nelson PC, Perkins TT, Betterton MD (2007) Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6–7 μm. Biophys J 93:4360–4373

    Article  Google Scholar 

  • Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799

    Article  ADS  Google Scholar 

  • Smith SB, Cui Y, Bustamante C (2003) Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol 361:134–162

    Article  Google Scholar 

  • Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126

    Article  ADS  Google Scholar 

  • Steward A, Toca-Herrera JL, Clarke J (2002) Versatile cloning system for construction of multimeric proteins for use in atomic force microscopy. Protein Sci 11(9):2179–2183

    Article  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep JA, Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312

    Article  ADS  Google Scholar 

  • Vogel V (2006) Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu Rev Biophys Biomol Struct 35:459–488

    Article  Google Scholar 

  • Walther KA, Grater F, Dougan L, Badilla CL, Berne BJ, Fernandez JM (2007) Signatures of hydrophobic collapse in extended proteins captured with force spectroscopy. Proc Natl Acad Sci USA 104:7916–7921

    Article  ADS  Google Scholar 

  • Williams PM, Fowler SB, Best RB, Toca-Herrera JL, Scott KA, Steward A, Clarke J (2003) Hidden complexity in the mechanical properties of titin. Nature 422:446–449

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank members of the Marqusee and Bustamante’s labs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susan Marqusee or Carlos Bustamante.

Additional information

Ciro Cecconi and Elizabeth A. Shank contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecconi, C., Shank, E.A., Dahlquist, F.W. et al. Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers. Eur Biophys J 37, 729–738 (2008). https://doi.org/10.1007/s00249-007-0247-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0247-y

Keywords

Navigation