Skip to main content
Log in

Multi-wavelength analytical ultracentrifugation as a tool to characterise protein–DNA interactions in solution

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Understanding how proteins interact with DNA, and particularly the stoichiometry of a protein–DNA complex, is key information needed to elucidate the biological role of the interaction, e.g. transcriptional regulation. Here, we present an emerging analytical ultracentrifugation method that features multi-wavelength detection to characterise complex mixtures by deconvoluting the spectral signals of the interaction partners into separate sedimentation profiles. The spectral information obtained in this experiment provides direct access to the molar stoichiometry of the interacting system to complement traditional hydrodynamic information. We demonstrate this approach by characterising a multimeric assembly process between the transcriptional repressor of bacterial sialic acid metabolism, NanR and its DNA-binding sequence. The method introduced in this study can be extended to quantitatively analyse any complex interaction in solution, providing the interaction partners have different optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almagro-Moreno S, Boyd EF (2009) Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 9:118

    Article  Google Scholar 

  • Baos SC, Phillips DB, Wildling L, McMaster TJ, Berry M (2012) Distribution of sialic acids on mucins and gels: a defense mechanism. Biophys J 102:176–184

    Article  CAS  Google Scholar 

  • Berke IC, Modis Y (2012) MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J 31:1714–1726

    Article  CAS  Google Scholar 

  • Bervoets I, Charlier D (2019) Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 43:304–339

    Article  CAS  Google Scholar 

  • Brookes E, Cao WM, Demeler B (2010) A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. EurBiophys J Biophys 39:405–414

    Article  Google Scholar 

  • Cole JL, Lary JW, T PM, Laue TM, (2008) Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol 84:143–179

    Article  CAS  Google Scholar 

  • Coombes D, Davies JS, Newton-Vesty MC, Horne CR, Setty TG, Subramanian R, Moir JWB, Friemann R, Panjikar S, Griffin MDW, North RA, Dobson RCJ (2020) The basis for non-canonical ROK family function in the N-acetylmannosamine kinase from the pathogen Staphylococcus aureus. J Biol Chem 295:3301–3315

    Article  CAS  Google Scholar 

  • Davies JS, Coombes D, Horne CR, Pearce FG, Friemann R, North RA, Dobson RCJ (2019) Functional and solution structure studies of amino sugar deacetylase and deaminase enzymes from Staphylococcus aureus. FEBS Lett 593:52–66

    Article  CAS  Google Scholar 

  • de Lorenzo V, Cases I (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3:105–118

    Article  Google Scholar 

  • Demeler B (2010) Methods for the design and analysis of sedimentation velocity and sedimentation equilibrium experiments with proteins. CurrProtoc Protein Sci Chapter 7:Unit 7.13

    Google Scholar 

  • Demeler B, Gorbet G (2016) Analytical ultracentrifugation data analysis with ultrascan-iii, Ch 8. In: Uchiyama S, Stafford WF, Laue T (eds) Analytical ultracentrifugation: instrumentation, software, and applications. Springer, 119–143 (2016)

  • Demeler B, Brookes E, Nagel-Steger L (2009) Analysis of heterogeneity in molecular weight and shape by analytical ultracentrifugation using parallel distributed computing. Methods Enzymol 454:87–113

    Article  CAS  Google Scholar 

  • Deutscher J (2008) The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93

    Article  CAS  Google Scholar 

  • Fasman G (1975) In handbook of biochemistry and molecular biology, nucleic acids, vol I. Chem. Rubber Co, Cleveland, pp 76–206

    Google Scholar 

  • Gerosa L, Kochanowski K, Heinemann M, Sauer U (2013) Dissecting specific and global transcriptional regulation of bacterial gene expression. Mol Syst Biol 9:658

    Article  Google Scholar 

  • Gorbet GE, Pearson JZ, Demeler AK, Cölfen H, Demeler B (2015) Next-generation AUC: analysis of multiwavelength analytical ultracentrifugation data. Methods Enzymol 562:27–47

    Article  CAS  Google Scholar 

  • Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  Google Scholar 

  • Horne CR, Kind L, Davies JS, Dobson RCJ (2020) On the structure and function of Escherichia coli YjhC: An oxidoreductase involved in bacterial sialic acid metabolism. Proteins 88:654–668

    Article  CAS  Google Scholar 

  • Horne CR, Venugopal H, Panjikar S, Henrickson A, Brookes E, North RA, Murphy JM, Friemann R, Griffin MDW, Ramm G, Demeler B, Dobson RCJ (2020) Mechanism of NanR gene repression and allosteric induction of bacterial sialic acid metabolism. bioRxiv:2020.2004.2022.056440

  • Johnson CN, Gorbet GE, Ramsower H, Urquidi J, Brancaleon L, Demeler B (2018) Multi-wavelength analytical ultracentrifugation of human serum albumin complexed with porphyrin. Eur Biophys J 47:789–797

    Article  CAS  Google Scholar 

  • Kalivoda KA, Steenbergen SM, Vimr ER, Plumbridge J (2003) Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. J Bacteriol 185:4806–4815

    Article  CAS  Google Scholar 

  • Kroe RR, Laue TM (2009) NUTS and BOLTS: applications of fluorescence-detected sedimentation. Anal Biochem 390:1–13

    Article  CAS  Google Scholar 

  • Laue TM, Senear DF, Eaton S, Ross JB (1993) 5-hydroxytryptophan as a new intrinsic probe for investigating protein–DNA interactions by analytical ultracentrifugation. Study of the effect of DNA on self-assembly of the bacteriophage lambda cI repressor. Biochemistry 32:2469–2472

    Article  CAS  Google Scholar 

  • Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Lee SP, Fuior E, Lewis MS, Han MK (2001) Analytical ultracentrifugation studies of translin: analysis of protein–DNA interactions using a single-stranded fluorogenic oligonucleotide. Biochemistry 40:14081–14088

    Article  CAS  Google Scholar 

  • MacGregor IK, Anderson AL, Laue TM (2004) Fluorescence detection for the XLI analytical ultracentrifuge. Biophys Chem 108:165–185

    Article  CAS  Google Scholar 

  • Mitra S, Demeler B (2020) Probing RNA–protein interactions and RNA compaction by sedimentation velocity analytical ultracentrifugation. Methods MolBiol (Clifton, NJ) 2113:281–317

    CAS  Google Scholar 

  • North RA, Watson AJ, Pearce FG, Muscroft-Taylor AC, Friemann R, Fairbanks AJ, Dobson RC (2016) Structure and inhibition of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus. FEBS Lett 590:4414–4428

    Article  CAS  Google Scholar 

  • North RA, Horne CR, Davies JS, Remus DM, Muscroft-Taylor AC, Goyal P, Wahlgren WY, Ramaswamy S, Friemann R, Dobson RCJ (2018) “Just a spoonful of sugar...”: import of sialic acid across bacterial cell membranes. Biophys Rev 10:219–227

    Article  CAS  Google Scholar 

  • North RA, Wahlgren WY, Remus DM, Scalise M, Kessans SA, Dunevall E, Claesson E, Soares da Costa TP, Perugini MA, Ramaswamy S, Allison JR, Indiveri C, Friemann R, Dobson RCJ (2018) The sodium sialic acid symporter from Staphylococcus aureus has altered substrate specificity. Front Chem 6:233

    Article  Google Scholar 

  • Pearson JZ, Krause F, Haffke D, Demeler B, Schilling K, Colfen H (2015) Next-generation AUC adds a spectral dimension: development of multiwavelength detectors for the analytical ultracentrifuge. Methods Enzymol 562:1–26

    Article  CAS  Google Scholar 

  • Schneidewind J, Krause F, Bocola M, Stadler AM, Davari MD, Schwaneberg U, Jaeger KE, Krauss U (2019) Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex. Commun Biol 2:351

    Article  Google Scholar 

  • Vimr ER (2013) Unified theory of bacterial sialometabolism: how and why bacteria metabolise host sialic acids. IntSch Res Not Micro 2013:816713

    Google Scholar 

  • Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153

    Article  CAS  Google Scholar 

  • Wahlgren WY, Dunevall E, North RA, Paz A, Scalise M, Bisignano P, Bengtsson-Palme J, Goyal P, Claesson E, Caing-Carlsson R, Andersson R, Beis K, Nilsson UJ, Farewell A, Pochini L, Indiveri C, Grabe M, Dobson RCJ, Abramson J, Ramaswamy S, Friemann R (2018) Substrate-bound outward-open structure of a Na(+)-coupled sialic acid symporter reveals a new Na(+) site. Nat Commun 9:1753

    Article  Google Scholar 

  • Wawra SE, Pflug L, Thajudeen T, Kryschi C, Stingl M, Peukert W (2018) Determination of the two-dimensional distributions of gold nanorods by multiwavelength analytical ultracentrifugation. Nat Commun 9:4898

    Article  Google Scholar 

  • Witte G, Urbanke C, Curth U (2005) Single-stranded DNA-binding protein of Deinococcus radiodurans: a biophysical characterization. Nucleic Acids Res 33:1662–1670

    Article  CAS  Google Scholar 

  • Yang TC, Catalano CE, Maluf NK (2015) Analytical ultracentrifugation as a tool to study nonspecific protein–DNA Interactions. Methods Enzymol 562:305–330

    Article  CAS  Google Scholar 

  • Zhang J, Pearson JZ, Gorbet GE, Colfen H, Germann MW, Brinton MA, Demeler B (2017) Spectral and hydrodynamic analysis of west nile virus RNA–Protein interactions by multiwavelength sedimentation velocity in the analytical ultracentrifuge. Anal Chem 89:862–870

    Article  CAS  Google Scholar 

  • Zhao H, Mayer ML, Schuck P (2014) Analysis of protein interactions with picomolar binding affinity by fluorescence-detected sedimentation velocity. Anal Chem 86:3181–3187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the New Zealand Royal Society Marsden Fund (RCJD, UOC1506); Ministry of Business, Innovation and Employment Smart Ideas Grant (RCJD, UOCX1706); and the National Institutes of Health Grants (BD, GM120600 and NSF-ACI-1339649). We acknowledge grant support for CRH (Maurice Wilkins Centre). MWL-AUC experiments were performed at the Canadian Center for Hydrodynamics, University of Lethbridge with support from the Canada Foundation for Innovation Grant CFI-37589. UltraScan multi-wavelength development is supported by NIH Grant GM120600 (BD), UltraScan supercomputer calculations were supported through NSF/XSEDE Grant TG-MCB070039N (BD), and University of Texas Grant TG457201 (BD).

Author information

Authors and Affiliations

Authors

Contributions

CRH designed and performed experiments, and analysed data with support in data interpretation from AH and BD. RCJD supervised the project and co-wrote the paper with CRH. All authors commented on the manuscript.

Corresponding author

Correspondence to Renwick C. J. Dobson.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: Analytical Ultracentrifugation 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1 Purification of E. coli NanR.

A typical chromatogram from size-exclusion chromatography, where a single monodisperse peak can be observed. Inset. SDS-PAGE analysis showing the increasing purity following each purification step. Lane 1, Protein ladder (kDa); lane 2, crude lysate; lane 3, pooled fractions from anion-exchange chromatography; lane 4, pooled fractions from heparin chromatography; and lane 5, pooled fractions following size-exclusion chromatography (EPS 1953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horne, C.R., Henrickson, A., Demeler, B. et al. Multi-wavelength analytical ultracentrifugation as a tool to characterise protein–DNA interactions in solution. Eur Biophys J 49, 819–827 (2020). https://doi.org/10.1007/s00249-020-01481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01481-6

Keywords

Navigation