Skip to main content

Advertisement

Log in

Aminoacyl-tRNA synthetases and their inhibitors as a novel family of antibiotics

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The emergence of multidrug-resistant strains of pathogenic microorganisms and the slow progress in new antibiotic development has led in recent years to a resurgence of infectious diseases that threaten the well-being of humans. The result of many microorganisms becoming immune to major antibiotics means that fighting off infection by these pathogens is more difficult. The best strategy to get around drug resistance is to discover new drug targets, taking advantage of the abundant information that was recently obtained from genomic and proteomic research, and explore them for drug development. In this regard, aminoacyl-tRNA synthetases (ARSs) provide a promising platform to develop novel antibiotics that show no cross-resistance to other classical antibiotics. During the last few years there has been a comprehensive attempt to find the compounds that can specifically target ARSs and inhibit bacterial growth. In this review, the current status in the development of ARS inhibitors will be briefly summarized, based on their chemical structures and working mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Antonio M, McFerran N, Pallen MJ (2002) Mutations affecting the Rossman fold of isoleucyl-tRNA synthetase are correlated with low-level mupirocin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 46:438-442

    Article  CAS  PubMed  Google Scholar 

  • Arnez JG, Moras D (1997) Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci 22:211–216

    Article  CAS  PubMed  Google Scholar 

  • Baines PJ, Mellows G, Swaisland AJ, Tasker TC (1984) Mupirocin: its chemistry and metabolism. In: Mupirocin a novel topical antibiotic. Royal Society of Medicine, London, pp 13–22

  • Beecham Group PLC (1989) Antibacterial 1-normon-2-yl-heterocyclic compounds. US patent 4,861,788

  • Beecham Group PLC (1991) Antibacterial monic acid derivatives. US patent 5,041,567

  • Berge JM, Copley RC, Eggleston DS, Hamprecht DW, Jarvest RL, Mensah LM, O'Hanlon PJ, Pope AJ (2000) Inhibitors of bacterial tyrosyl tRNA synthetase: synthesis of four stereoisomeric analogues of the natural product SB-219383. Bioorg Med Chem Lett 10:1811–1814

    Article  CAS  PubMed  Google Scholar 

  • Broom NJ, Cassels R, Cheng HY, Elder JS, Hannan PC, Masson N, O'Hanlon PJ, Pope A, Wilson JM (1996) The chemistry of pseudomonic acid. 17. Dual-action C-1 oxazole derivatives of pseudomonic acid having an extended spectrum of antibacterial activity. J Med Chem 39:3598–3600

    Article  Google Scholar 

  • Brown P, Eggleston DS, Haltiwanger RC, Jarvest RL, Mensah L, O'Hanlon PJ, Pope AJ (2001) Synthetic analogues of SB-219383. Novel C-glycosyl peptides as inhibitors of tyrosyl tRNA synthetase. Bioorg Med Chem Lett 11:711–714

    Article  CAS  PubMed  Google Scholar 

  • Burbaum JJ, Schimmel P (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266:16965–16968

    CAS  PubMed  Google Scholar 

  • Carcanague DR (1997) Novel derivatives of pseudomonic acid. Bioorg Med Chem Lett 7:2805–2808

    Article  CAS  Google Scholar 

  • Class YJ, Deshong P (1995) The pseudomonic acid. Chem Rev 95:1483–1857

    Google Scholar 

  • Cookson BD (1998) The emergence of mupirocin resistance: a challenge to infection control and antibiotic prescribing practice. J Antimicrob Chemother 41:11–18

    Article  CAS  PubMed  Google Scholar 

  • Cubist Pharmaceuticals Inc (1998a) Aminoacyl adenylate minics as novel antimicrobial and antiparasitic agents. US patent 5,726,195

  • Cubist Pharmaceuticals Inc (1998b) Aminoacyl sulfamides for the treatment of hyperproliferative disorders. WO 98/41215

  • Cubist Pharmaceuticals Inc (2000a) Condensed imidazolidinones as tRNA synthetase inhibitors. WO 00/18772

  • Cubist Pharmaceuticals Inc (2000b) Tetracyclic heterocycles as antimicrobial. WO 00/17206

  • Cusack S (1997) Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 7:881–889

    Article  CAS  PubMed  Google Scholar 

  • Desjardins M, Garneau S, Desgagnes J, Lacoste L, Yang F, Lapointe J, Chenevert R (1998) Glutamyl adenylate analogues are inhibitors of glutamyl-tRNA synthetase. Bioorg Chem 26:1–13

    Article  CAS  Google Scholar 

  • Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    CAS  PubMed  Google Scholar 

  • Farmer TH, Gilbart J, Elson SW (1992) Biochemical basis of mupirocin resistance in strains of Staphylococcus aureus. J Antimicrob Chemother 30:587-596

    CAS  PubMed  Google Scholar 

  • Finn J, Hill J, Ram S, Morytko M, Yu X, Gimi R, Silverman J, Stein R, Lim A, Mak E, Gallant P, Wendler P, Rose S, Stevens A, Keith D (2001) Novel antibacterial agents targeting methionyl-tRNA synthetase: a chemlnformatic approach to convert HTS data into quality medicinal chemistry leads. In: Proceedings of the 41st Annual Interscience Conference on Antimicrobial Agents and Chemotherapy Chicago, Ill.

  • Forrest AK, Jarvest RL, Mensah LM, O'Hanlon PJ, Pope AJ, Sheppard RJ (2000) Aminoalkyl adenylate and aminoacyl sulfamate intermediate analogues differing greatly in affinity for their cognate Staphylococcus aureus aminoacyl tRNA synthetases. Bioorg Med Chem Lett 10:1871–1874

    Article  CAS  PubMed  Google Scholar 

  • Fraser TH, Rich A (1975) Amino acids are not all initially attached to the same position on transfer RNA molecules. Proc Natl Acad Sci USA 72:3044–3048

    CAS  PubMed  Google Scholar 

  • Frugier M, Florentz C, Schimmel P, Giege R (1993) Triple aminoacylation specificity of a chimerized transfer RNA. Biochemistry 32:14053–14061

    CAS  PubMed  Google Scholar 

  • Heacock D, Forsyth CJ, Shiba K, Musiter-Forsyth K (1996) Synthesis and aminoacyl-tRNA synthetase inhibitory of prolyl adenylate analogs. Bioorg Chem 24:273–289

    Article  CAS  Google Scholar 

  • Hill J, Finn J, Wang Z, Silverman J, Oliver N, Gallant P, Wender P, Keith D (2001) Synthesis and activity of spirocyclic tetrahydrofurans as inhibitors of phenylalanine tRNA synthetase. In: Proceedings of the 41st Annual Interscience Conference on Antimicrobial Agents and Chemotherapy Chicago, Ill.

  • Houge-Frydrych CS, Readshaw SA, Bell DJ (2000a) SB-219383, a novel tyrosyl tRNA synthetase inhibitor from a Micromonospora sp. II. Structure determination. J Antibiot (Tokyo) 53:351–356

  • Houge-Frydrych CS, Gilpin ML, Skett PW, Tyler JW (2000b) SB-203207 and SB-203208, two novel isoleucyl tRNA synthetase inhibitors from a Streptomyces sp. II. Structure determination. J Antibiot (Tokyo) 53:364–372

    Google Scholar 

  • Hughes J, Mellows G (1980) Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem J 191:209–219

    CAS  PubMed  Google Scholar 

  • Ibba M, Morgan S, Curnow AW, Pridmore DR, Vothknecht UC, Gardner W, Lin W, Woese CR, Soll D (1997) A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278:1119–1122

    CAS  PubMed  Google Scholar 

  • Jarvest RL, Berge JM, Houge-Frydrych CS, Janson C, Mensah LM, O'Hanlon PJ, Pope A, Saldanha A, Qiu X (1999) Interaction of tyrosyl aryl dipeptides with S. aureus tyrosyl tRNA synthetase: inhibition and crystal structure of a complex. Bioorg Med Chem Lett 9:2859–2862

    Article  CAS  PubMed  Google Scholar 

  • Jarvest RL, Berge JM, Berry V, Boyd HF, Brown MJ, Elder JS, Forrest AK, Fosberry AP, Gentry DR, Hibbs MJ, Jaworski DD, O'Hanlon PJ, Pope AJ, Rittenhouse S, Sheppard RJ, Slater-Radosti C, Worby A (2002) Nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase with potent antibacterial activity against gram-positive pathogens. J Med Chem 45:1959–1962

    Article  CAS  PubMed  Google Scholar 

  • Klein LL, Yeung CM, Kurath P, Mao JC, Fernandes PB, Lartey PA, Pernet AG (1989) Synthesis and activity of nonhydrolyzable pseudomonic acid analogues. J Med Chem 32:151–160

    CAS  PubMed  Google Scholar 

  • Konishi M, Nishio M, Saitoh K, Miyaki T, Oki T, Kawaguchi H (1989) Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J Antibiot (Tokyo) 42:1749–1755

    Google Scholar 

  • Konrad I, Roschenthaler R (1977) Inhibition of phenylalanine tRNA synthetase from Bacillus subtilis by ochratoxin A. FEBS Lett 83:341–347

    Article  CAS  PubMed  Google Scholar 

  • Leberman R, Hartlein M, Cusack S (1991) Escherichia coli seryl-tRNA synthetase: the structure of a class 2 aminoacyl-tRNA synthetase. Biochim Biophys Acta 1089:287–298

    CAS  PubMed  Google Scholar 

  • Lee J, Kang SU, Kang MK, Chun MW, Jo YJ, Kwak JH, Kim S (1999) Methionyl adenylate analogues as inhibitors of methionyl-tRNA synthetase. Bioorg Med Chem Lett 9:1365–1370

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kang SU, Kim SY, Kim SE, Jo YJ, Kim S (2001) Vanilloid and isovanilloid analogues as inhibitors of methionyl-tRNA and isoleucyl-tRNA synthetases. Bioorg Med Chem Lett 11:965–968

    Article  CAS  PubMed  Google Scholar 

  • Merck & Co Inc (2000a) Novel prolines as antimicrobial agents. WO 00/66119

  • Merck & Co Inc (2000b) Novel catechols as antimicrobial agents. WO 00/66120

  • Morton TM, Johnston JL, Patterson J, Archer GL. (1995) Characterization of a conjugative staphylococcal mupirocin resistance plasmid. Antimicrob Agents Chemother 39:1272–1280

    CAS  PubMed  Google Scholar 

  • Nass G, Poralla K, Zahner H (1969) Effect of the antibiotic Borrelidin on the regulation of threonine biosynthetic enzymes in E. coli. Biochem Biophys Res Commun 34:84–91

    CAS  PubMed  Google Scholar 

  • Ogilvie A, Wiebauer K, Kersten W (1975) Inhibition of leucyl-transfer ribonucleic acid synthetasymol. Biochem J 152:511–515

    CAS  PubMed  Google Scholar 

  • Parr I, Hill J, Finn J, Yang D, Silverman J, Oliver N, Gallant P, Mak E, Stein R, Lim A, (2001) Synthesis and biological activity of novel di-alkylated thiazolidinone phenylalanyl-tRNA synthetase inhibitors. In: Proceedings of the 41st Annual Interscience Conference on Antimicrobial Agents and Chemotherapy Chicago, Ill.

  • Ribas de Pouplana L, Schimmel P (2001) Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104:191–193

    PubMed  Google Scholar 

  • Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D (1991) Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science 52:1682–1689

    Google Scholar 

  • Schimmel P, Giege R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768

    CAS  PubMed  Google Scholar 

  • Schmitz FJ, Lindenlauf E, Hofmann AC, Fluit AC, Verhoef J, Heinz HP, Jones ME (1998) The prevalence of low- and high-level mupirocin resistance in staphylococci from 19 European hospitals. J Antimicrob Chemother 42:489–495

    Article  CAS  PubMed  Google Scholar 

  • Sissler M, Eriani G, Martin F, Giege R, Florentz C (1997) Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase. Nucleic Acids Res 25:4899–4906

    Google Scholar 

  • SmithKline Beecham PLC (1996a) (Hetero)-aryl ketones derivatives with antibacterial properties. US patent 5,536,745

  • SmithKline Beecham PLC (1996b) (Hetero)-aryl ketones derivatives with antibacterial properties. JP patent 9,157,269

  • SmithKline Beecham PLC (1997a) Mupirocinsulfamates with antibacterial activity. WO 97/05126

  • SmithKline Beecham PLC (1997b) Compounds with a sulfamoyl group and pharmaceutical compositions containing them. WO 97/35859

  • SmithKline Beecham PLC (1998a) Sulfamate derivatives with t-RNA synthetase inhibiting activity. WO 98/32765

  • SmithKline Beecham PLC (1998b) Enzymatic preparation of monic acids. US patent 5,726,049

  • SmithKline Beecham PLC (1999) Quinolones used as MRS inhibitors and bactericides. WO 99/55677

  • SmithKline Beecham PLC (2000a) 2-NH-Pyridones and pyrimidones as MRS inhibitors. WO 00/71524 A.

  • SmithKline Beecham PLC (2000b) Benzimidazole derivatives and their use as methionyl-tRNA synthetase inhibitors. WO 00/71522 A1

  • SmithKline Beecham PLC (2000c) Quinolones as t-RNA synthetase inhibitors and antibacterial agents. WO 00/21949

  • Stefanska AL, Fulston M, Houge-Frydrych CS, Jones JJ, Warr SR (2000a) A potent seryl tRNA synthetase inhibitor SB-217452 isolated from a Streptomyces species. J Antibiot (Tokyo) 53:1346–1353

    Google Scholar 

  • Stefanska AL, Cassels R, Ready SJ, Warr SR (2000b) SB-203207 and SB-203208, two novel isoleucyl tRNA synthetase inhibitors from a Streptomyces sp. I. Fermentation, isolation and properties. J Antibiot (Tokyo) 53:357–363

  • Tanaka K, Tamaki M, Watanabe S (1969) Effect of furanomycin on the synthesis of isoleucyl-tRNA. Biochim Biophys Acta 195:244–245

    CAS  PubMed  Google Scholar 

  • Werner RG, Thorpe LF, Reuter W, Nierhaus KH (1976) Indolmycin inhibits prokaryotic tryptophanyl-tRNA ligase. Eur J Biochem 68:1–3

    CAS  PubMed  Google Scholar 

  • Yu XY, Hill JM, Yu G, Wang W, Kluge AF, Wendler P, Gallant P(1999) Synthesis and structure-activity relationships of a series of novel thiazoles as inhibitors of aminoacyl-tRNA synthetases. Bioorg Med Chem Lett 9:375–380

    Article  CAS  PubMed  Google Scholar 

  • Yu XY, Hill JM, Yu G, Yang Y, Kluge AF, Keith D, Finn J, Gallant P, Silverman J, Lim A (2001) A series of quinoline analogues as potent inhibitors of C. albicans prolyl tRNA synthetase. Bioorg Med Chem Lett 11:541–544

    Article  CAS  PubMed  Google Scholar 

  • Yun HJ, Lee SW, Yoon GM, Kim SY, Choi S, Lee YS, Choi EC, Kim S (2003) Prevalence and mechanisms of low- and high-level mupirocin resistance in staphylococci isolated from a Korean Hospital. J Antimicrob Chemother (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Lee, S.W., Choi, EC. et al. Aminoacyl-tRNA synthetases and their inhibitors as a novel family of antibiotics. Appl Microbiol Biotechnol 61, 278–288 (2003). https://doi.org/10.1007/s00253-003-1243-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1243-5

Keywords

Navigation