Skip to main content
Log in

Bacterial heme biosynthesis and its biotechnological application

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Proteins carrying a prosthetic heme group are vital parts of bacterial energy conserving and stress response systems. They also mediate complex enzymatic reactions and regulatory processes. Here, we review the multistep biosynthetic pathway of heme formation including the enzymes involved and reaction mechanisms. Potential biotechnological implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3A–D.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Akhtar M (1991) Mechanism and stereochemistry of the enzymes involved in the conversion of uroporphyrinogen III into haem. In: Jordan PM (ed) Biosynthesis of tetrapyrroles. Elsevier, Amsterdam, pp 67–99

  • Alexeev D, Alexeeva M, Baxter RL, Campopiano DJ, Webster SP, Sawyer L (1998) The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J Mol Biol 284:401–419

    Article  CAS  PubMed  Google Scholar 

  • Al-Karadaghi S, Hansson M, Nikonov S, Jonsson B, Hederstedt L (1997) Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. Structure 5:1501–1510

    CAS  PubMed  Google Scholar 

  • Arnould S, Camadro J-M (1998) The domain structure of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proc Natl Acad Sci USA 95:10553–10558

    Article  CAS  PubMed  Google Scholar 

  • Avissar YJ, Ormerod JG, Beale SI (1989) Distribution of delta-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151:513–519

    CAS  PubMed  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43–73

    Article  CAS  Google Scholar 

  • Beale SI, Castelfranco PA (1973) 14C incorporation from exogenous compounds into δ-aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun 52:143–149

    CAS  PubMed  Google Scholar 

  • Benjamin WH Jr, Hall P, Briles DE (1991) A hemA mutation renders Salmonella typhimurium avirulent in mice, yet capable of eliciting protection against intravenous infection with S. typhimurium. Microb Pathog 11:289–295

    PubMed  Google Scholar 

  • Bykhovskii V, Zaitseva NI, Eliseev AA (1998) Tetrapyrroles: diversity, biosynthesis, biotechnology. Appl Biochem Microbiol 34:1–18

    Google Scholar 

  • Chang CK (1994) Haem d1 and other haem cofactors from bacteria. Ciba Found Symp 180:228––246

    CAS  PubMed  Google Scholar 

  • Colloc'h N, Mornon JP, Camadro JM (2002) Towards a new T-fold protein?: the coproporphyrinogen III oxidase sequence matches many structural features from urate oxidase. FEBS Lett 526:5–10

    Article  CAS  PubMed  Google Scholar 

  • Contestabile R, Angelaccio S, Maytum R, Bossa F, John RA (2000a) The contribution of a conformationally mobile, active site loop to the reaction catalyzed by glutamate semialdehyde aminomutase. J Biol Chem 275:3879–3886

    Article  CAS  PubMed  Google Scholar 

  • Contestabile R, Jenn T, Akhtar M, Gani D, John RA (2000b) Reactions of glutamate 1-semialdehyde aminomutase with R- and S-enantiomers of a novel, mechanism-based inhibitor, 2,3-diaminopropyl sulfate. Biochemistry 39:3091–3096

    Article  CAS  PubMed  Google Scholar 

  • Dailey HA (2002) Terminal steps of haem biosynthesis. Biochem Soc Trans 30:590–595

    CAS  PubMed  Google Scholar 

  • Elder GH (1998) Update on enzyme and molecular defects in porphyria. Photodermatol Photoimmunol Photomed 14:66–69

    CAS  PubMed  Google Scholar 

  • Erskine PT, Senior N, Awan S, Lambert R, Lewis G, Tickle IJ, Sarwar M, Spencer P, Thomas P, Warren MJ, Shoolingin-Jordan PM, Wood SP, Cooper JB (1997) X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase. Nat Struct Biol 4:1025–1031

    CAS  PubMed  Google Scholar 

  • Erskine PT, Norton E, Cooper JB, Lambert R, Coker A, Lewis G, Spencer P, Sarwar M, Wood SP, Warren MJ, Shoolingin-Jordan PM (1999) X-ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 Å resolution. Biochemistry 38:4266–4276

    Article  CAS  PubMed  Google Scholar 

  • Frankenberg N, Lagarias JC (2003) Biosynthesis and biological functions of bilins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Elsevier, Amsterdam

  • Frankenberg N, Erskine PT, Cooper JB, Shoolingin-Jordan PM, Jahn D, Heinz DW (1999a) High resolution crystal structure of a Mg2+-dependent porphobilinogen synthase. J Mol Biol 289:591–602

    Article  CAS  PubMed  Google Scholar 

  • Frankenberg N, Jahn D, Jaffe EK (1999b) Pseudomonas aeruginosa contains a novel type V porphobilinogen synthase with no required catalytic metal ions. Biochemistry 38:13976–13982

    Article  CAS  PubMed  Google Scholar 

  • Frere F, Schubert WD, Stauffer F, Frankenberg N, Neier R, Jahn D, Heinz DW (2002) Structure of porphobilinogen synthase from Pseudomonas aeruginosa in complex with 5-fluorolevulinic acid suggests a double Schiff base mechanism. J Mol Biol 320:237–247

    PubMed  Google Scholar 

  • Friedmann HC, Duban ME, Valasinas A, Frydman B (1992) The enantioselective participation of (S)- and (R)-diaminovaleric acids in the formation of delta-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 185:60–68

    CAS  PubMed  Google Scholar 

  • Fuchs J, Weber S, Kaufmann R (2000) Genotoxic potential of porphyrin type photosensitizers with particular emphasis on 5-aminolevulinic acid: implications for clinical photodynamic therapy. Free Radic Biol Med 28:537–548

    Article  CAS  PubMed  Google Scholar 

  • Gibson KD, Laver WG, Neuberger A (1958) Initial steps in the biosynthesis of porphyrins. The formation of δ-aminolevulinic acid from glycine and succinyl-CoA by particles of chicken erythrocytes. Biochem J 70:71–81

    CAS  Google Scholar 

  • Grimm B, Smith MA, von Wettstein D (1992) The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. Eur J Biochem 206:579–585

    CAS  PubMed  Google Scholar 

  • Hadener A, Matzinger PK, Malashkevich VN, Louie GV, Wood SP, Oliver P, Alefounder PR, Pitt AR, Abell C, Battersby AR (1993) Purification, characterization, crystallisation and X-ray analysis of selenomethionine-labelled hydroxymethylbilane synthase from Escherichia coli. Eur J Biochem 211:615–624

    CAS  PubMed  Google Scholar 

  • Hadener A, Matzinger PK, Battersby AR, McSweeney S, Thompson AW, Hammersley AP, Harrop SJ, Cassetta A, Deacon A, Hunter WN, Nieh YP, Raftery J, Hunter N, Helliwell JR (1999) Determination of the structure of seleno-methionine-labelled hydroxymethylbilane synthase in its active form by multi-wavelength anomalous dispersion. Acta Crystallogr D Biol Crystallogr 55:631–643

    Article  PubMed  Google Scholar 

  • Hansson M, Hederstedt L (1994) Bacillus subtilis HemY is a peripheral membrane protein essential for protoheme IX synthesis which can oxidize coproporphyrinogen III and protoporphyrinogen IX. J Bacteriol 176:5962–5970

    CAS  PubMed  Google Scholar 

  • Hennig M, Grimm B, Contestabile R, John RA, Jansonius JN (1997) Crystal structure of glutamate-1-semialdehyde aminomutase: an alpha2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 94:4866–4871

    Article  CAS  PubMed  Google Scholar 

  • Heurgue-Hamard V, Champ S, Engstrom A, Ehrenberg M, Buckingham RH (2002) The hemK gene in Escherichia coli encodes the N(5)-glutamine methyltransferase that modifies peptide release factors. EMBO J 21:769–778

    Article  CAS  PubMed  Google Scholar 

  • Homuth G, Rompf A, Schumann W, Jahn D (1999) Transcriptional control of Bacillus subtilis hemN and hemZ. J Bacteriol 181:5922–5929

    CAS  PubMed  Google Scholar 

  • Hörtensteiner S (1999) Chlorophyll breakdown in higher plants and algae. Cell Mol Life Sci 56:330–347

    Article  PubMed  Google Scholar 

  • Hunter GA, Ferreira GC (1999a) Lysine-313 of 5-aminolevulinate synthase acts as a general base during formation of the quinonoid reaction intermediates. Biochemistry 38:3711–3718

    Article  CAS  PubMed  Google Scholar 

  • Hunter GA, Ferreira GC (1999b) Pre-steady-state reaction of 5-aminolevulinate synthase. Evidence for a rate-determining product release. J Biol Chem 274:12222–12228

    Article  CAS  PubMed  Google Scholar 

  • Ilag LL, Jahn D (1992) Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry 31:7143–7151

    CAS  PubMed  Google Scholar 

  • Jaffe EK (2003) An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chem Biol 10:25–34

    Article  CAS  PubMed  Google Scholar 

  • Jahn D, Verkamp E, Söll D (1992) Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17:215–218

    Article  CAS  PubMed  Google Scholar 

  • Jordan PM (1994) The biosynthesis of uroporphyrinogen III: mechanism of action of porphobilinogen deaminase. In: The biosynthesis of tetrapyrrole pigments. Wiley, Chichester

  • Jordan PM, Warren MJ (1987) Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett 225:87–92

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi G, Kumar AM, Tamalge P, Shemin D (1958) The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem 233:1214–1219

    CAS  Google Scholar 

  • Klemm DJ, Barton LL (1987) Purification and properties of protoporphyrinogen oxidase from an anaerobic bacterium, Desulfovibrio gigas. J Bacteriol 169:5209–5215

    CAS  PubMed  Google Scholar 

  • Laghai A, Jordan PM (1977) An exchange reaction catalysed by delta-aminolevulinate synthase from Rhodopseudomonas spheroides. Biochem Soc Trans 5:299–300

    CAS  PubMed  Google Scholar 

  • Layer G, Verfurth K, Mahlitz E, Jahn D (2002) Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J Biol Chem 277:34136–34142

    Article  CAS  PubMed  Google Scholar 

  • Lecerof D, Fodje M, Hansson A, Hansson M, Al-Karadaghi S (2000) Structural and mechanistic basis of porphyrin metallation by ferrochelatase. J Mol Biol 297:221–232

    CAS  PubMed  Google Scholar 

  • Lee HJ, Lee SB, Chung JS, Han SU, Han O, Guh JO, Jeon JS, An G, Back K (2000) Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Plant Cell Physiol 41:743–749

    CAS  PubMed  Google Scholar 

  • Luo J, Lim CK (1993) Order of uroporphyrinogen III decarboxylation on incubation of porphobilinogen and uroporphyrinogen III with erythrocyte uroporphyrinogen decarboxylase. Biochem J 289:529–532

    CAS  PubMed  Google Scholar 

  • Magnusson S, Ekstrom TJ, Elmer E, Kanje M, Ny L, Alm P (2000) Heme oxygenase-1, heme oxygenase-2 and biliverdin reductase in peripheral ganglia from rat, expression and plasticity. Neuroscience 95:821–829

    Article  CAS  PubMed  Google Scholar 

  • Malik Z, Lugaci H (1987) Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer 56:589–595

    CAS  PubMed  Google Scholar 

  • Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285

    Article  PubMed  Google Scholar 

  • Martins BM, Grimm B, Mock HP, Huber R, Messerschmidt A (2001) Crystal structure and substrate binding modeling of the uroporphyrinogen-III decarboxylase from Nicotiana tabacum. Implications for the catalytic mechanism. J Biol Chem 276:44108–44116

    Article  CAS  PubMed  Google Scholar 

  • Mathews MA, Schubert HL, Whitby FG, Alexander KJ, Schadick K, Bergonia HA, Phillips JD, Hill CP (2001) Crystal structure of human uroporphyrinogen III synthase. EMBO J 20:5832–5839

    Article  CAS  PubMed  Google Scholar 

  • Medlock AE, Dailey HA (1996) Human coproporphyrinogen oxidase is not a metalloprotein. J Biol Chem 271:32507–32510

    Article  CAS  PubMed  Google Scholar 

  • Montforts FP, Glasenapp-Breiling M (2002) Naturally occurring cyclic tetrapyrroles. Fortschr Chem Org Naturst 84:1–51

    CAS  PubMed  Google Scholar 

  • Moser J, Lorenz S, Hubschwerlen C, Rompf A, Jahn D (1999) Methanopyrus kandleri glutamyl-tRNA reductase. J Biol Chem 274:30679–30685

    CAS  PubMed  Google Scholar 

  • Moser J, Schubert WD, Beier V, Bringemeier I, Jahn D, Heinz DW (2001) V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 20:6583–6590

    Article  CAS  PubMed  Google Scholar 

  • Moser J, Schubert WD, Heinz DW, Jahn D (2002) Structure and function of glutamyl-tRNA reductase involved in 5-aminolaevulinic acid formation. Biochem Soc Trans 30:579–584

    CAS  PubMed  Google Scholar 

  • Nandi DL (1978) Studies on delta-aminolevulinic acid synthase of Rhodopseudomonas spheroides. Reversibility of the reaction, kinetic, spectral, and other studies related to the mechanism of action. J Biol Chem 253:8872–8877

    CAS  PubMed  Google Scholar 

  • O'Brian MR, Thöny-Meyer L (2002) Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv Microb Physiol 46:257–318

    CAS  PubMed  Google Scholar 

  • O'Neill GP, Söll D (1990) Transfer RNA and the formation of the heme and chlorophyll precursor, 5-aminolevulinic acid. Biofactors 2:227–235

    CAS  PubMed  Google Scholar 

  • Panek H, O'Brian MR (2002) A whole genome view of prokaryotic haem biosynthesis. Microbiology 148:2273–2282

    CAS  PubMed  Google Scholar 

  • Raux E, Leech HK, Beck R, Schubert HL, Santander PJ, Roessner CA, Scott AI, Martens JH, Jahn D, Thermes C, Rambach A, Warren MJ (2003) Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem J 370:505–516

    Article  CAS  PubMed  Google Scholar 

  • Sasarman A, Chartrand P, Lavoie M, Tardif D, Proschek R, Lapointe C (1979) Mapping of a new hem gene in Escherichia coli K12. J Gen Microbiol 113:297–303

    CAS  PubMed  Google Scholar 

  • Sasarman A, Letowski J, Czaika G, Ramirez V, Nead MA, Jacobs JM, Morais R (1993) Nucleotide sequence of the hemG gene involved in the protoporphyrinogen oxidase activity of Escherichia coli K12. Can J Microbiol 39:1155–1161

    CAS  PubMed  Google Scholar 

  • Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert WD, Nakayashiki T, Murai M, Wall K, Thomann HU, Heinz DW, Inokuchi H, Söll D, Jahn D (2002) Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J Biol Chem 277:48657–48663

    Article  CAS  PubMed  Google Scholar 

  • Schauer S, Lüer C, Moser J (2003) Large scale production of biologically active Escherichia coli glutamyl-tRNA reductase from inclusion bodies. Protein Expr Purif (in press)

  • Schobert M, Jahn D (2002) Regulation of heme biosynthesis in non-phototrophic bacteria. J Mol Microbiol Biotechnol 4:287–294

    CAS  PubMed  Google Scholar 

  • Schubert HL, Raux E, Matthews MA, Phillips JD, Wilson KS, Hill CP, Warren MJ (2002a) Structural diversity in metal ion chelation and the structure of uroporphyrinogen III synthase. Biochem Soc Trans 30:595–600

    CAS  PubMed  Google Scholar 

  • Schubert W-D, Moser J, Schauer S, Heinz DW, Jahn D (2002b) Structure and function of glutamyl-tRNA reductase, the first enzyme of tetrapyrrole biosynthesis in plants and prokaryotes. Photosynth Res 74:205–215

    Article  CAS  Google Scholar 

  • Shemin D, Russell CS (1953) Delta-aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J Am Chem Soc 75:4873–4875

    CAS  Google Scholar 

  • Shoolingin-Jordan PM, Spencer P, Sarwar M, Erskine PE, Cheung KM, Cooper JB, Norton EB (2002) 5-Aminolaevulinic acid dehydratase: metals, mutants and mechanism. Biochem Soc Trans 30:584–590

    CAS  PubMed  Google Scholar 

  • Shoolingin-Jordan PM, Al-Daihan S, Alexeev D, Baxter RL, Bottomley SS, Kahari ID, Roy I, Sarwar M, Sawyer L, Wang SF (2003) 5-Aminolevulinic acid synthase: mechanism, mutations and medicine. Biochim Biophys Acta 1647:361–366

    Article  CAS  PubMed  Google Scholar 

  • Sidler W (1994) Phycobilisomes and phycobiliprotein structure. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 139–216

  • Smith MA, Grimm B, Kannangara CG, von Wettstein D (1991a) Spectral kinetics of glutamate-1-semialdehyde aminomutase of Synechococcus. Proc Natl Acad Sci USA 88:9775–9779

    CAS  PubMed  Google Scholar 

  • Smith MA, Kannangara CG, Grimm B, von Wettstein D (1991b) Characterization of glutamate-1-semialdehyde aminotransferase of Synechococcus. Steady-state kinetic analysis. Eur J Biochem 202:749–757

    CAS  PubMed  Google Scholar 

  • Smith MA, Kannangara CG, Grimm B (1992) Glutamate 1-semialdehyde aminotransferase: anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 31:11249–11254

    CAS  PubMed  Google Scholar 

  • Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106

    CAS  PubMed  Google Scholar 

  • Thauer RK, Bonacker LG (1994) Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. Ciba Found Symp 180:210––227

    CAS  PubMed  Google Scholar 

  • Tyacke RJ, Contestabile R, Grimm B, Harwood JL, John RA (1995) Reactions of glutamate semialdehyde aminotransferase (glutamate-1-semialdehyde 2,1 aminomutase) with vinyl and acetylenic substrate analogues analysed by rapid scanning spectrophotometry. Biochem J 309:307–313

    CAS  PubMed  Google Scholar 

  • Vavilin DV, Vermaas WF (2002) Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Physiol Plant 115:9–24

    Article  CAS  PubMed  Google Scholar 

  • Verneuil H de, Sassa S, Kappas A (1983) Purification and properties of uroporphyrinogen decarboxylase from human erythrocytes. A single enzyme catalyzing the four sequential decarboxylations of uroporphyrinogens I and III. J Biol Chem 258:2454–2460

    PubMed  Google Scholar 

  • Warren MJ, Scott AI (1990) Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends Biochem Sci 15:486–491

    Article  PubMed  Google Scholar 

  • Weinstein JD, Beale SI (1983) Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J Biol Chem 258:6799–6807

    CAS  PubMed  Google Scholar 

  • Whitby FG, Phillips JD, Kushner JP, Hill CP (1998) Crystal structure of human uroporphyrinogen decarboxylase. EMBO J 17:2463–2471

    Article  CAS  PubMed  Google Scholar 

  • Wu CK, Dailey HA, Rose JP, Burden A, Sellers VM, Wang BC (2001) The 2.0 Å structure of human ferrochelatase, the terminal enzyme of heme biosynthesis. Nat Struct Biol 8:156–160

    CAS  PubMed  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratory was supported by funds from the Deutsche Forschungsgemeinschaft und the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Frankenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frankenberg, N., Moser, J. & Jahn, D. Bacterial heme biosynthesis and its biotechnological application. Appl Microbiol Biotechnol 63, 115–127 (2003). https://doi.org/10.1007/s00253-003-1432-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1432-2

Keywords

Navigation