Skip to main content

Advertisement

Log in

Gene expression in Escherichia coli biofilms

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

DNA microarrays were used to study the gene expression profile of Escherichia coli JM109 and K12 biofilms. Both glass wool in shake flasks and mild steel 1010 plates in continuous reactors were used to create the biofilms. For the biofilms grown on glass wool, 22 genes were induced significantly (p≤0.05) compared to suspension cells, including several genes for the stress response (hslS, hslT, hha, and soxS), type I fimbriae (fimG), metabolism (metK), and 11 genes of unknown function (ybaJ, ychM, yefM, ygfA, b1060, b1112, b2377, b3022, b1373, b1601, and b0836). The DNA microarray results were corroborated with RNA dot blotting. For the biofilm grown on mild steel plates, the DNA microarray data showed that, at a specific growth rate of 0.05/h, the mature biofilm after 5 days in the continuous reactors did not exhibit differential gene expression compared to suspension cells although genes were induced at 0.03/h. The present study suggests that biofilm gene expression is strongly associated with environmental conditions and that stress genes are involved in E. coli JM109 biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams JL, McLean RJC (1999) Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65:4285–4287

    CAS  PubMed  Google Scholar 

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587

    Article  CAS  PubMed  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    CAS  PubMed  Google Scholar 

  • DeLisa MP, Wu C-F, Wang L, Valdes JJ, Bentley WE (2001) DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol 183:5239–5247

    CAS  PubMed  Google Scholar 

  • Elvers KT, Lappin-Scott HM (2000) Biofilms and biofouling. Academic Press, San Diego

  • Fawcett P, Eichenberger P, Losick R, Youngman P (2000) The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci USA 97:8063–8068

    Article  CAS  PubMed  Google Scholar 

  • Ghigo J-M (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445

    Article  Google Scholar 

  • Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Helmann JD, Wu MFW, Kobel PA, Gamo F-J, Wilson M, Morshedi MM, Navre M, Paddon C (2001) Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183:7318–7328

    Article  CAS  PubMed  Google Scholar 

  • Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek MR, Tolker-Nielsen T, Givskov M, Molin S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017

    Google Scholar 

  • Hoffman JA, Badger JL, Zhang Y, Kim KS (2001) Escherichia coli K1 purA and sorC are preferentially expressed upon association with human brain microvascular endothelial cells. Microb Pathog 31:69–79

    Article  CAS  PubMed  Google Scholar 

  • Ishihama A (1997) Adaptation of gene expression in stationary phase bacteria. Curr Opin Genet Dev 7:582–588

    Article  CAS  PubMed  Google Scholar 

  • Jackson DW, Suzuki K, Oadford L, Simecka JW, Hart ME, Romeo T (2002) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184:290–301

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman A, Earthman JC, Wood TK (1997) Corrosion inhibition by aerobic biofilms on SAE1018 steel. Appl Microbiol Biotechnol 47:62–68

    Article  CAS  Google Scholar 

  • Kievit TRD, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873

    Article  PubMed  Google Scholar 

  • Kitagawa M, Matsumura Y, Tsuchido T (2000) Small heat shock proteins, IbpA and IbpB, are involved in heat and superoxide stresses in Escherichia coli. FEMS Microbiol Lett 184:165–171

    Article  CAS  PubMed  Google Scholar 

  • Kjaergaard K, Schembri MA, Ramos C, Molin S, Klemm P (2000) Antigen 43 facilitates formation of multispecies biofilm. Environ Microbiol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  • Kolter R, Losick R (1998) One for all and all for one. Science 280:226–227

    Article  CAS  PubMed  Google Scholar 

  • Kuchma SL, O’Toole GA (2000). Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol 11:429–433

    Article  CAS  PubMed  Google Scholar 

  • Lagares A, Hozbor DF, Niehaus K, Otero AJLP, Lorenzen J, Arnold W, Puhler A (2001) Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol 183:1248–1258

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (1999) Molecular cell biology. Freeman, New York

  • Loewen PC, Hu B, Strutinsky J, Sparling R (1998) Regulation in the rpoS regulon of Escherichia coli. Can J Microbiol 44:707–717

    Article  CAS  PubMed  Google Scholar 

  • Michán C, Manchado M, Peuyo C (2002) SoxRS down-regulation of rob transcription. J Bacteriol 184:4733–4738

    Article  PubMed  Google Scholar 

  • Moat AG, Foster JW (1995) Microbial physiology. Wiley-Liss, New York

  • Mourino M, Madrid C, Balsalobre C, Prenafeta A, Munoa F, Blanco J, Blanco M, Blanco JE, Juarez A (1996) The Hha protein as a modulator of expression of virulence factors in Escherichia coli. Infect Immun 64:2881–2884

    PubMed  Google Scholar 

  • Nickel JC, Ruseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624

    CAS  PubMed  Google Scholar 

  • Oosthuizen MC, Steyn B, Lindsay D, Brözel VS, von Holy A (2001) Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm. FEMS Microbiol Lett 194:47–51

    Article  CAS  PubMed  Google Scholar 

  • Oosthuizen MC, Steyn B, Theron J, Cosette P, Lindsay D, von Holy A, Brözel VS (2002) Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol 68:2770–2780

    Article  CAS  PubMed  Google Scholar 

  • Örnek D, Jayaraman A, Syrett BC, Hsu CH, Mansfeld F, Wood TK (2002) Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or γ-polyglutamate. Appl Microbiol Biotechnol 58:651–657

    Article  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  CAS  PubMed  Google Scholar 

  • Potera C (1999) Forging a link between biofilms and disease. Science 19:1837–1838

    Article  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    CAS  PubMed  Google Scholar 

  • Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002

    CAS  PubMed  Google Scholar 

  • Purevdorj B, Costerton JW, Stoodley P (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68:4457–4464

    Article  CAS  PubMed  Google Scholar 

  • Reisner A, Haagensen JAJ, Schembri MA, Zechner EL, Molin S (2003) Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48:933–946

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Bedzyk LA Setlow P, Thomas SM, Ye RW, Wood TK (2004) Gene expression in Bacillus subtilis surface. Biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng (in press)

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Sauer K, Camper AK (2001) Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183:6579–6589

    Article  CAS  PubMed  Google Scholar 

  • Schembri MA, Kjaergaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    CAS  PubMed  Google Scholar 

  • Sperandio V, Torres AG, Giron JA, Kaper JB (2001) Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 183:5187–5197

    CAS  PubMed  Google Scholar 

  • Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957

    Article  CAS  PubMed  Google Scholar 

  • Steyn B, Oosthuizen MC, MacDonald R, Theron J, Brözel VS (2001) The use of glass wool as an attachment surface for studying phenotypic changes in Pseudomonas aeruginosa biofilms by two-dimensional gel electrophoresis. Proteomics 1:871–879

    Article  CAS  PubMed  Google Scholar 

  • Wada A, Yamazaki Y, Fujita N, Ishihama A (1990) Structure and probable genetic location of a “ribosome modulation factor” associated with 100S ribosomes in stationary-phase. Proc Natl Acad Sci USA 87:2657–2661

    CAS  PubMed  Google Scholar 

  • Wei Y, Lee J-M, Richmond C, Blattner FR, Rafalski JA, Larossa RA (2001) High-density microarray-mediated gene expression profiling of Escherichia coli. J Bacteriol 183:545–556

    CAS  PubMed  Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teltzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864

    Article  CAS  PubMed  Google Scholar 

  • Wilson M, DeRisi J, Kristensen H-H, Imboden P, Rane S, Brown PO, Schoolnik GK (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA 96:12833–12838

    CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Viera J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    PubMed  Google Scholar 

  • Ye RW, Tao W, Bedzyk L, Young T, Chen M, Li L (2000) Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol 182:4458–4465

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, D., Bedzyk, L.A., Thomas, S.M. et al. Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64, 515–524 (2004). https://doi.org/10.1007/s00253-003-1517-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1517-y

Keywords

Navigation