Skip to main content

Advertisement

Log in

Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation—depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (QEtOH) but not the ethanol yields (YEtOH) in Saccharomyces cerevisiae. Within the same phenol functional group (aldehyde, ketone, and acid) the inhibition of volumetric ethanol productivity was found to depend on the amount of methoxyl substituents and hence hydrophobicity (log P). Many pentose-utilizing strains Escherichia coli, Pichia stipititis, and Zymomonas mobilis produce ethanol in concentrated hemicellulose liquors but detoxification by overliming is needed. Thermoanaerobacter mathranii A3M3 can grow on pentoses and produce ethanol in hydrolysate without any need for detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahring BK, Jensen K, Nielsen P, Bjerre AB, Schmidt AS (1996) Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresour Technol 58:107–113

    Article  CAS  Google Scholar 

  • Akrida-Demertzi K, Demertzis PG, Koutinas AA (1988) pH and trace-elements content in raisin extract industrial-scale alcoholic fermentation. Biotechnol Bioeng 31:666–669

    CAS  Google Scholar 

  • Alexandre H, Charpentier C (1998) Biochemical aspects of stuck and sluggish fermentation in grape must. J Ind Microbiol Biotechnol 20:20–27

    Article  CAS  Google Scholar 

  • Alén R, Sjöström E, Suominen S (1990) Application of ion-exclusion chromatography to alkaline pulping liquors; separation of hydroxy carboxylic acids from inorganic solids. J Chem Tech Biotechnol 51:225–233

    Google Scholar 

  • Ando S, Arai I, Kiyoto K, Hanai S (1986) Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. J Ferment Technol 64:567–570

    Article  CAS  Google Scholar 

  • Baeza J, Freer J (1997) Chemical characterization of wood and its components. In: Hon DNS, Shirashi N (eds) Wood and cellulosic chemistry. Dekker, New York, pp 275–374

  • Barber AR, Hansson H, Pamment NB (2000) Acetaldehyde stimulation of the growth of Saccharomyces cerevisiae in the presence of inhibitors found in lignocellulose-to-ethanol fermentations. J Ind Microbiol Biotechnol 25:104–108

    Article  CAS  Google Scholar 

  • Bardet M, Robert DR (1985) On the reactions and degradation of the lignin during steam hydrolysis of aspen wood. Svensk Papperst 6:61–67

    Google Scholar 

  • Barquinero E, Cruz R, Mieres G, Dominguez H (1980) Caracterizacion quimica de efluentes de pulpeoquimico a la soda de bagazo. Revista Icidca 14:28–33

    CAS  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577

    Article  CAS  Google Scholar 

  • Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    Article  CAS  Google Scholar 

  • Bromberg SK, Bower PA, Duncombe GR, Fehring J, Gerber L, Lau VK, Tata M (1997) Requirements for zinc, manganese, calcium and magnesium in wort. J Am Soc Brew Chem 55:123–128

    CAS  Google Scholar 

  • Buchert J, Niemelä K, Puls J, Poutanen K (1990) Improvement in the fermentability of steamed hemicellulose hydrolysate by ion exclusion. Process Biochem Int pp 176–180

  • Burtscher E, Bobleter O, Schwald W, Concin R, Binder H (1987) Chromatographic analysis of biomass reaction products produced by hydrothermolysis of poplar wood. J Chromatogr 390:401–412

    Article  CAS  Google Scholar 

  • Campbell MM, Sederoff R (1996) Variation in lignin content and composition: mechanisms of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13

    CAS  PubMed  Google Scholar 

  • Chum HL, Johnson DK, Black SK, Overend RP (1990) Pretreatment catalyst effects and the combined severity parameter. Appl Biochem Biotechnol 24/25:1–14

    Google Scholar 

  • Clark TA, Mackie KL (1984) Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J Chem Tech Biotechnol 34B:101–110

    CAS  Google Scholar 

  • Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225

    Article  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  PubMed  Google Scholar 

  • Dierssen GA, Holtegaard K, Jensen B, Rosen K (1956) Volatile carboxylic acids in molasses and their inhibitory action on fermentation. Int Sugar J 58:35–39

    CAS  Google Scholar 

  • Doelle M, Greenfield PF, Doelle HW (1990) Effect of mineral ions on ethanol formation during sugar cane molasses fermentation using Zymomonas mobilis ATCC 39676. Process Biochem Int: 151–156

    Google Scholar 

  • Dunlop AP (1948) Furfural formation and behaviour. Ind Eng Chem 40:204–209

    CAS  Google Scholar 

  • Fan LT, Lee Y-H, Gharpuray MM (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. In: Fiechter A (ed) Microbial reactions. Springer, Berlin Heidelberg New York, pp 157–187

  • Fengel D, Wegener G (1989) Wood. Chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

  • Fenske JJ, Griffin DA, Penner MH (1998) Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. J Ind Microbiol Biotechnol 20:364–368

    Article  CAS  Google Scholar 

  • Fenske JJ, Hashimoto AG, Penner MH (1999) Relative fermentability of lignocellulosic dilute-acid prehydrolysates: application of a Pichia stipititis-based toxicity assay. Appl Biochem Biotechnol 73:145–157

    Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  PubMed  Google Scholar 

  • Garrote G, Dominguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkstoff 57:191–202

    Article  CAS  Google Scholar 

  • Gong CS, Chen CS, Chen LF (1993) Pretreatment of sugar cane bagasse hemicellulose hydrolysate for ethanol by yeast. Appl Biochem Biotechnol 39/40:83–88

    Google Scholar 

  • Hahn-Hägerdal B, Jeppsson H, Olsson L, Mohagheghi A (1994) An interlaboratory comparison of the performance of ethanol-producing micro-organisms in a xylose-rich acid hydrolysate. Appl Microbiol Biotechnol 41:62–72

    Article  Google Scholar 

  • Herrero AA, Gomez RF (1980) Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 40:571–577

    CAS  PubMed  Google Scholar 

  • Holtzapple MT, Jun JH, Ashok G, Patibandla S, Dale BE (1991) The ammonia freeze explosion (AFEX) process—a practical lignocellulose pretreatment. Appl Biochem Biotechnol 28–29:59–74

    Google Scholar 

  • Jones RP (1986) Effect of the relative concentration of ion species on yeast growth and ethanol-production. Process Biochem 21:183–187

    CAS  Google Scholar 

  • Jones RP, Greenfield PF (1984) A review of yeast ionic nutrition. Part I. Growth and fermentation requirements. Process Biochem April:48–59

    Google Scholar 

  • Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697

    Article  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2001) Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 57:631–638

    Article  CAS  PubMed  Google Scholar 

  • Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26

    Article  CAS  PubMed  Google Scholar 

  • Klinke HB, Olsson L, Thomsen AB, Ahring BK (2003) Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol Bioeng 81:738–747

    Article  CAS  PubMed  Google Scholar 

  • Larsson M, Galbe M, Zacchi G (1997) Recirculation of process water in the production of ethanol from softwood. Bioresour Technol 60:143–151

    Article  CAS  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999a) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159

    Article  CAS  Google Scholar 

  • Larsson S, Reimann A, Nilvebrant NO, Jönsson LJ (1999b) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77–79:91–103

    Google Scholar 

  • Larsson S, Quintana-Sáinz A, Reimann A, Nilvebrant N-O, Jönsson LJ (2000) Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol 84–86:617–632

    Google Scholar 

  • Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulosic hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Lawther JM, Sun R (1996a) The fractional characterisation of polysaccharides and lignin components in alkaline treated and atmospheric refined wheat straw. Ind Crops Prod 5:87–95

    Article  CAS  Google Scholar 

  • Lawther JM, Sun R, Banks WB (1996b) Fractional characterization of alkali-labile lignin and alkaline-insoluble lignin from wheat straw. Ind Crops Prod 5:291–300

    Article  CAS  Google Scholar 

  • Lee WG, Lee JS, Shin CS, Park SC, Chang HN, Chang YK (1999) Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Appl Biochem Biotechnol 77–79:547–559

    Google Scholar 

  • Leonard RH, Hajny GJ (1945) Fermentation of wood sugars to ethyl alcohol. Ind Eng Chem 37:390–395

    CAS  Google Scholar 

  • Lynd LR (1989) Production of ethanol from lignocellulosic materials using thermophilic bacteria: critical evaluation of potential and review. In: Fiechter A (ed) Lignocellulosic materials. Springer, Berlin Heidelberg New York, pp 1–52

  • Lynd L (2001) Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol Prog 17:118–125

    Article  CAS  PubMed  Google Scholar 

  • Maiorella BL, Blanch HW, Wilke CR (1984) Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 26:1155–1166

    CAS  Google Scholar 

  • Maman O, Marseille F, Guillet B, Disnar JR, Morin P (1996) Separation of phenolic aldehydes, ketones and acids from lignin degradation by capillary zone electrophoresis. J Chromatogr A 755:89–97

    Article  CAS  Google Scholar 

  • Martin C, Jonsson LJ (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb Technol 32:386–395

    Article  CAS  Google Scholar 

  • Martin C, Galbe M, Nilvebrant NO, Jonsson LJ (2002a) Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. Appl Biochem Biotechnol 98:699–716

    Article  Google Scholar 

  • Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Jonsson LJ (2002b) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 31:274–282

    Article  CAS  Google Scholar 

  • Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293

    Article  CAS  PubMed  Google Scholar 

  • McMillan JD (1994a) Conversion of hemicellulose hydrolyzates to ethanol. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. ACS Symp Ser, pp 292–324

  • McMillan JD (1994b) Pre-treatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. ACS Symp Ser, pp 411–437

  • McMillan JD, Newman MM, Templeton DW, Mohagheghi A (1999) Simultaneous saccharification and cofermentation of dilute-acid pretreated poplar to ethanol using xylose-fermenting Zymomonas mobilis. Appl Biochem Biotechnol 77–79:649–665

    Google Scholar 

  • Mikulásova M, Pekarovicová A, Vodnú S (1990) Influence of phenolics on biomass production by Candida utilis and Candida albicans. Biomass 23:149–154

    Article  Google Scholar 

  • Mills SC, Child JJ, Spencer JFT (1971) The utilization of aromatic compounds by yeasts. Antonie Van Leeuwenhoek 37:281–287

    CAS  PubMed  Google Scholar 

  • Nishikawa NK, Sutcliffe R, Saddler JN (1988) The influence of lignin degradation products on xylose fermentation by Klebsiella pneumoniae. Appl Microbiol Biotechnol 27:549–552

    CAS  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I. Inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II. Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B, Galbe M, Zacchi G (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzyme Microb Technol 19:470–476

    Article  CAS  Google Scholar 

  • Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63:46–55

    Article  CAS  PubMed  Google Scholar 

  • Ragnar M, Lindgren CT, Nilvebrant N-O (2000) pKa values of guaiacyl and syringyl phenols related to lignin. J Wood Chem Technol 20:277–305

    CAS  Google Scholar 

  • Ranatunga TD, Jervis J, Helm RF, McMillan JD, Hatzis C (1997a) Identification of inhibitory components toxic toward Zymomonas mobilis CP4(pZB5) xylose fermentation. Appl Biochem Biotechnol 67:185–197

    CAS  Google Scholar 

  • Ranatunga TD, Jervis J, Helm RF, McMillan JD, Hatzis C (1997b) Toxicity of hard-wood extractives toward Saccharomyces cerevisiae glucose fermentation. Biotechnol Lett 19:1125–1127

    Article  CAS  Google Scholar 

  • Rivard CJ, Engel RE, Hayward TK, Nagle NJ, Hatzis C, Philippidis GP (1996) Measurement of the inhibitory potential and detoxification of biomass pretreatment hydrolysate for ethanol production. Appl Biochem Biotechnol 57/58:183–191

    Google Scholar 

  • Saka S (1997) Chemical composition and distribution. In: Hon DNS, Shirashi N (eds) Wood and cellulosic chemistry. Dekker, New York, pp 51–81

  • Sanchez B, Bautista J (1988) Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enzyme Microb Technol 10:315–318

    Article  CAS  Google Scholar 

  • Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, formation, structure and reactions. Wiley-Interscience, New York, pp 345–372

  • Sears KD, Beélik A, Casebier RL, Engen RJ, Hamilton JK, Hergert HL (1971) Southern pine prehydrolyzates: characterization of polysaccharides and lignin fragments. J Polym Sci, Part C 36:425–433

    Google Scholar 

  • Shevchenko SM, Chang K, Robinson J, Saddler JN (2000) Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips. Appl Biochem Biotechnol 72:207–211

    Article  CAS  Google Scholar 

  • Sierra-Alvarez R, Lettinga G (1991) The methanogenic toxicity of wastewater lignins and lignin related compounds. J Chem Tech Biotechnol 50:443–455

    CAS  Google Scholar 

  • von Sivers M, Zacchi G (1996) Ethanol from lignocellulosics: a review of the economy. Bioresour Technol 56:131–140

    Article  Google Scholar 

  • von Sivers M, Zacchi G, Olsson L, Hahn-Hägerdal B (1994) Cost ananlysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:555–560

    PubMed  Google Scholar 

  • Sjöström E (1991) Carbohydrate degradation products from alkaline pretreatment of biomass. Biomass Bioenergy 1:61–64

    Article  Google Scholar 

  • Sommer P (1998) Conversion of hemicellulose and d-xylose into ethanol by the use of thermophilic anaerobic bacteria. Ph.D. Thesis, Technical University of Denmark, p 64

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lidén G (1997a) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36:4659–4665

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Niklasson C, Lidén G (1997b) Acetic acid—friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae. Chem Eng Sci 52:2653–2659

    Article  CAS  Google Scholar 

  • Tajima K, Yoshizumi H, Terashima Y (1966) Salt and sugar tolerances of yeast on alcoholic fermentation. I. The inhibition of fermentation by the highly concentrated salts in molasses. Jap Ferment J: 77–84

    Google Scholar 

  • Tengborg C, Stenberg K, Galbe M, Zacchi G, Larsson S, Palmqvist E, Hahn-Hägerdal B (1998) Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Appl Biochem Biotechnol 70–72:3–15

    Google Scholar 

  • Torry-Smith M, Sommer P, Ahring BK (2003) Purification of bioethanol effluent in an UASB reactor system with simultaneous biogas formation. Biotech Bioeng 84:7–12

    Article  CAS  Google Scholar 

  • Torssell KBG (1997) Natural product chemistry: a mechanistic, biosynthetic and ecological approach. Apotekarsocieteten, Stockholm

    Google Scholar 

  • Tran AV, Chambers RP (1985) Red oak wood derived inhibtors in the ethanol fermentation of xylose by Pichia stipititis CBS 5776. Biotechnol Lett 7:841–846

    CAS  Google Scholar 

  • Tran AV, Chambers RP (1986) Lignin and extractives derived inhibitors in the 2,3-butanediol fermentation of mannose-rich prehydrolysates. Appl Microbiol Biotechnol 23:191–197

    CAS  Google Scholar 

  • Umezawa T, Higuchi T (1991) Chemistry of lignin degradation by lignin peroxidases. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion. ACS Symposium Series, Washington, pp 236–246

  • Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy 19:63–102

    Article  CAS  Google Scholar 

  • Wolniewicz E, Letourneau F, Villa P (1988) Comportment of S. cerevisiae in relation to ions Ca++ and Mg++ on beet molasses wort. Biotechnol Lett 10:355–360

    CAS  Google Scholar 

  • de Wulf O, Thonart P, Gainage P, Marlier M, Paris A, Paquot M (1986) Bioconversion of vanillin to vanillyl alcohol by Saccharomyces cerevisiae. Biotechnol Bioeng Symp 17:605–616

    Google Scholar 

  • Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicelllulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

  • Zemek J, Kosikova B, Augustin J, Joniak D (1979) Antibiotic properties of lignin components. Folia Microbiologica 24:483–486

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Danish Energy Program for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Ahring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinke, H.B., Thomsen, A.B. & Ahring, B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66, 10–26 (2004). https://doi.org/10.1007/s00253-004-1642-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1642-2

Keywords

Navigation