Skip to main content
Log in

Strategies and perspectives for genetic improvement of wine yeasts

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recent developments in expression profile and proteomic techniques illustrated that the main oenological traits of wine yeasts are complex and influenced by several genes, each of them identified as absolutely essential. Only for monogenic properties the genetic improvement programmes of wine yeasts can be performed by alteration of individual genes. Ideally the most productive way of improving the whole-cell biocatalysts is by evolution of the entire cell genome. In this article we briefly review the main genetic improvement techniques applied in new and optimised wine strains construction, paying particular attention to blind and whole genome strategies, such as the sexual recombination and genome shuffling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abécassis V, Pompon D, Truan G (2000) High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: Statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2. Nucleic Acids Res 28:e88

    Article  PubMed  Google Scholar 

  • Akada R (2002) Genetically modified industrial yeast ready for application. J Biosci Bioeng 94:536–544

    CAS  Google Scholar 

  • Arensdorf JJ, Loomis AK, DiGrazia PM, Monticello DJ, Pienkos PT (2002) Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants. Appl Environ Microbiol 68:691–698

    Article  CAS  PubMed  Google Scholar 

  • Barre P, Vezinhet F, Dequin S, Blondin B (1993) Genetic improvement of wine yeasts. In: Fleet GR (ed) Wine microbiology and biotechnology. Harwood Academic, Newark, pp 265–287

    Google Scholar 

  • Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH (1999) Directed evolution of a fungal peroxidase. Nat Biotechnol 17:379–384

    Article  CAS  PubMed  Google Scholar 

  • Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Murray, London

    Google Scholar 

  • Gill RT (2003) Enabling inverse metabolic engineering through genomics. Curr Opin Biotech 14:484–490

    Article  CAS  PubMed  Google Scholar 

  • Giudici P, Zinnato A (1983) Influenza dell’uso di mutanti nutrizionali sulla produzione di alcooli superiori. Vignevini 10:63–65

    CAS  Google Scholar 

  • Giudici P, Pulvirenti A, Cassanelli S, De Vero L, Gullo M (2004) Novel microorganisms in bread production and cereals and how to create them. Int J Food Microbiol (submitted)

  • Hara S, Iimura Y, Oyama H, Kozeki T, Kitano K, Otsuka K (1981) The breeding of cryophilic killer wine yeasts. Agric Biol Chem 153:1327–1334

    Google Scholar 

  • Ingraham JL, Guymon JF (1960) The formation of higher aliphatic alcohols by mutant strains of Saccharomyces cerevisiae. Arch Biochem Biophys 88:157–166

    CAS  PubMed  Google Scholar 

  • Kishimoto M (1994) Fermentation characteristics of hybrids between the cryophilic wine yeast Saccharomyces bayanus and mesophilic wine yeast Saccharomyces cerevisiae. J Ferment Bioeng 77:432–435

    Article  CAS  Google Scholar 

  • Laing E, Pretorius IS (1993) Co-expression of an Erwinia chrysanthemi pectate lyase-encoding gene (pelE) and an Erwinia carotovora polygalacturonase-encoding gene (peh1) in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 39:181–188

    Article  CAS  PubMed  Google Scholar 

  • Levichkin IV, Shul’ga AA, Kurbanov FT, Kirpichnikov MP (1995) A new method of designing hybrid genes—the homolog recombination method (in Russian). Mol Biol (Mosk) 29:983–991

    CAS  Google Scholar 

  • Martins CVB, Horii J, Pizzirani-Kleiner AA (1998) Fusão de protoplastos de Saccharomyces cerevisiae avaliada por floculação e produção de H2S. Sci Agric 55:64–72

    CAS  Google Scholar 

  • Marullo P, Bely M, Masneuf-Pomarede I, Aigle M, Dubourdieu D (2004) Inheritable nature of oenological traits is demonstrated by meiotic segregation of industrial wine yeast strains. FEMS Yeast Res 4:711–719

    Article  CAS  PubMed  Google Scholar 

  • Masneuf I, Murat ML, Naumov GI, Tominaga T, Dubourdieu D (2002) Hybrids Saccharomyces cerevisiae ×Saccharomyces bayanus var. uvarum having a high liberating ability of some sulphur varietal aromas of Vitis vinifera Sauvignon blanc wines. J Int Sci Vigne Vin 36:205–212

    CAS  Google Scholar 

  • Michnick S, Roustan JL, Remize F, Barre P, Dequin S (1997) Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13:783–793

    Article  CAS  PubMed  Google Scholar 

  • Naumov GI, Kondrat’eva VI, Naumova ES (1986) Methods for hybridization of homothallic yeast diplonts and haplonts. Biotekhnologiya 6:33–36

    Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol R 64:34–50

    Article  CAS  PubMed  Google Scholar 

  • Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, del Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gonzales JA, Gonzales R, Querol A, Sendra J, Ramon D (1993) Construction of a recombinant wine yeast strain expressing β-(1,4)-endoglucanase and its use in microvinification processes. Appl Environ Microbiol 59:2801–2806

    PubMed  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  PubMed  Google Scholar 

  • Ranieri S, Pretorius IS (2000) Selection and improvement of wine yeasts. Ann Microbiol 50:15–31

    Google Scholar 

  • Ranieri S, Giudici P, Zambonelli C (1998) Oenological properties of Saccharomyces bayanus and Saccharomyces cerevisiae interspecific hybrids. Food Technol Biotech 36:51–53

    Google Scholar 

  • Remize F, Roustan JL, Sblayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineering Saccharomyces cerevisiae wine strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65:143–149

    CAS  PubMed  Google Scholar 

  • Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405:847–856

    Article  CAS  PubMed  Google Scholar 

  • Romano P, Soli MG, Suzzi G (1983) Procedure for mutagenizing spores of Saccharomyces cerevisiae. J Bacteriol 156:907–908

    CAS  PubMed  Google Scholar 

  • Romano P, Grazia Soli M, Suzzi G, Grazia L, Zambonelli C (1985) Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Appl Environ Microbiol 50:1064–1067

    CAS  Google Scholar 

  • Rous CV, Snow R, Kunkee RE (1983) Reduction of higher alcohols by fermentation with leucine-auxotrophic mutant of wine yeast. J Inst Brew 89:274–278

    CAS  Google Scholar 

  • Sato M, Kishimoto M, Watari J, Takashio M (2002) Breeding of Brewer’s Yeast by hybridization between a top-fermenting yeast Saccharomyces cerevisiae and a cryophilic yeast Saccharomyces bayanus. J Biosci Bioeng 93:509–511

    CAS  Google Scholar 

  • Schilter B, Constable A (2002) Regulatory control of genetically modified (GM) foods: likely developments. Toxicol Lett 127:341–349

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Choi E, Ryu D (1985) Construction of killer wine yeast strain. Appl Environ Microbiol 49:1211–1215

    CAS  Google Scholar 

  • Shinohara T, Saito K, Yanagida F, Goto S (1994) Selection and hybridization of wine yeasts for improved winemaking properties: fermentation rate and aroma productivity. J Ferment Bioeng 77:428–431

    Article  CAS  Google Scholar 

  • Spencer JFT, Spencer DM (1977) Hybridization of non-sporulating and weakly sporulating strains of brewers and distillers yeast. J Inst Brew 83:287–289

    Google Scholar 

  • Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RD (2002) Dissecting the architecture of a quantitative trait locus in yeast. Nature 416:326–330

    Article  CAS  PubMed  Google Scholar 

  • Stemmer WP (1994a) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91:10747–10751

    Google Scholar 

  • Stemmer WP (1994b) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G, Aristodou A, Nielsen J (1998) Metabolic engineering. Academic, San Diego

    Google Scholar 

  • Stewart GG (1981) The genetic manipulation of industrial yeast strains. Can J Microbiol 27:973–990

    CAS  Google Scholar 

  • Taguchi S, Ozaki A, Momose H (1998) Engineering of a cold-adapted protease by sequential random mutagenesis and screening system. Appl Environ Microbiol 64:492–495

    CAS  PubMed  Google Scholar 

  • Volschenk H, Viljoen M, Grobler J, Petzold B, Bauer F, Subden RE, Young RA, Lonvaud A, Denayrolles M, Van Vuuren HJ (1997) Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nat Biotechnol 15:253–257

    Article  CAS  PubMed  Google Scholar 

  • Winge O, Lausten O (1938) Artificial species hybridization in yeast. CR Trav Lab Carlsberg Ser Physiol 22:235

    Google Scholar 

  • Wöhrmann K, Lange P (1980) The polymorphism of esterases in yeast (Saccharomyces cerevisiae). J Inst Brew 86:174–177

    Google Scholar 

  • Zambonelli C (1988) I lieviti selezionati. In: Zambonelli C ( ed) Microbiologia e biotecnologia dei vini. Edagricole, Bologna, pp 123–136

    Google Scholar 

  • Zambonelli C, Passarelli P, Ranieri S, Giudici P (1993) Taxonomic and technological implications of sterility in hybrids from cryotolerant and non cryotolerant Saccharomyces strains. Ann Microbiol 43:217–223

    Google Scholar 

  • Zambonelli C, Passarelli P, Ranieri S, Bertolini L, Giudici P, Castellari L (1997) Technological properties and temperature response of interspecific Saccharomyces hybrids. J Sci Food Agric 78:7–12

    Article  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16:258–261

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Solieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giudici, P., Solieri, L., Pulvirenti, A.M. et al. Strategies and perspectives for genetic improvement of wine yeasts. Appl Microbiol Biotechnol 66, 622–628 (2005). https://doi.org/10.1007/s00253-004-1784-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1784-2

Keywords

Navigation