Skip to main content
Log in

An acetoin-regulated expression system of Bacillussubtilis

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An expression system, which is based on the promoter of the acoABCL operon of Bacillus subtilis was developed and characterized. The acoABCL operon codes for the acetoin dehydrogenase complex, which is the major enzyme system responsible for the catabolism of acetoin in B. subtilis. Besides weak organic acids, the neutral overflow metabolite acetoin is metabolized by the cells in the early stationary phase. Transcription of reporter gene fusions with the acoA promoter of this operon is strongly repressed by glucose but induced by acetoin as soon as the preferred carbon source glucose is exhausted. The co-expression of an additional copy of the regulator gene acoR led to more than twofold higher activity of the acoA promoter. It is demonstrated that the induction of this promoter in growing cells with acetoin is possible with non-phosphotransferase system sugars as carbon and energy source and in a ccpA mutant background. Moreover, it could be shown that the activity of the acoA-directed expression system correlates with the level of acetoin in the medium. During glucose limitation, the utilization of the alternative energy source acetoin keeps the protein synthesis machinery of B. subtilis cells active and thus allows for a long lasting acoA-controlled expression of recombinant genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

E. coli :

Escherichia coli

B. subtilis :

Bacillus subtilis

OD500 :

optical density at 500 nm

RT:

reverse transcription

PCR:

polymerase chain reaction

LB:

Luria Broth medium

References

  • Ali NO, Bignon J, Rapoport G, Debarbouille M (2001) Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. J Bacteriol 183:2497–2504

    Article  CAS  Google Scholar 

  • Bernhardt J, Weibezahn J, Scharf C, Hecker M (2003) Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res 13:224–237

    Article  CAS  Google Scholar 

  • Bongers RS, Veening JW, van Wieringen M, Kuipers OP, Kleerebezem M (2005) Development and characterization of a subtilin-regulated expression system in Bacillus subtilis: strict control of gene expression by addition of subtilin. Appl Environ Microbiol 71:8818–8824

    Article  CAS  Google Scholar 

  • Bruand C, Ehrlich SD, Janniere L (1991) Unidirectional theta replication of structurally stable Enterococcus faecalis plasmid pAM beta 1. EMBO J 10:2171–2177

    Article  CAS  Google Scholar 

  • Choi SK, Saier MH Jr (2005) Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. J Bacteriol 187:6856–6861

    Article  CAS  Google Scholar 

  • Corchero JL, Villaverde A (1998) Plasmid maintenance in Escherichia coli recombinant cultures is dramatically, steadily, and specifically influenced by features of the encoded proteins. Biotechnol Bioeng 58:625–632

    Article  CAS  Google Scholar 

  • Dahl MK (2002) CcpA-independent carbon catabolite repression in Bacillus subtilis. J Mol Microbiol Biotechnol 3:315–321

    Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  CAS  Google Scholar 

  • Faires N, Tobisch S, Bachem S, Martin-Verstraete I, Hecker M, Stülke J (1999) The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J Mol Microbiol Biotechnol 1:141–148

    CAS  PubMed  Google Scholar 

  • Ferrari E, Miller B (1999) Bacillus expression: a Gram-positive model. In: Fernandez JM, Hoeffler JP (eds) Gene expression systems-using nature for the art of expression. Academic, San Diego, CA, pp 65–94

    Chapter  Google Scholar 

  • Flores S, de Anda-Herrera R, Gosset G, Bolivar FG (2004) Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol Bioeng 87:485–494

    Article  CAS  Google Scholar 

  • Fründ C, Priefert H, Steinbüchel A, Schlegel HG (1989) Biochemical and genetic analyses of acetoin catabolism in Alcaligenes eutrophus. J Bacteriol 171:6539–6548

    Article  Google Scholar 

  • Geissendorfer M, Hillen W (1990) Regulated expression of heterologous genes in Bacillus subtilis using the Tn10 encoded tet regulatory elements. Appl Microbiol Biotechnol 33:657–663

    Article  CAS  Google Scholar 

  • Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13:247–261

    Article  CAS  Google Scholar 

  • Hoch JA (1991) Genetic analysis in Bacillus subtilis. Methods Enzymol 204:305–320

    Article  CAS  Google Scholar 

  • Huang M, Oppermann-Sanio FB, Steinbuchel A (1999) Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J Bacteriol 181:3837–3841

    Article  CAS  Google Scholar 

  • Jones KL, Kim SW, Keasling JD (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2:328–338

    Article  CAS  Google Scholar 

  • Jürgen B, Barken KB, Tobisch S, Pioch D, Wümpelmann M, Hecker M, Schweder T (2005) Application of an electric DNA-chip for the expression analysis of bioprocess-relevant marker genes of Bacillus subtilis. Biotechnol Bioeng 92:299–307

    Article  Google Scholar 

  • Krüger N, Steinbüchel A (1992) Identification of acoR, a regulatory gene for the expression of genes essential for acetoin catabolism in Alcaligenes eutrophus H16. J Bacteriol 174:4391–4400

    Article  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A et al (1997) The complete dgenome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  Google Scholar 

  • Lin-Chao S, Chen WT, Wong TT (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6:3385–3393

    Article  CAS  Google Scholar 

  • Ludwig H, Stülke J (2001) The Bacillus subtilis catabolite control protein CcpA exerts all its regulatory functions by DNA-binding. FEMS Microbiol Lett 203:125–129

    Article  CAS  Google Scholar 

  • Ludwig H, Meinken C, Matin A, Stülke J (2002) Insufficient expression of the ilv-leu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant. J Bacteriol 184:5174–5178

    Article  CAS  Google Scholar 

  • Martin-Verstraete I, Debarbouille M, Klier A, Rapoport G (1992) Mutagenesis of the Bacillus subtilis “−12,−24” promoter of the levanase operon and evidence for the existence of an upstream activating sequence. J Mol Biol 226:85–99

    Article  CAS  Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Rygus T, Hillen W (1991) Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon. Appl Microbiol Biotechnol 35:594–599

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, New York

    Google Scholar 

  • Shirk MC, Wagner WP, Fall R (2002) Isoprene formation in Bacillus subtilis: a barometer of central carbon assimilation in a bioreactor? Biotechnol Prog 18:1109–1115

    Article  CAS  Google Scholar 

  • Stülke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880

    Article  Google Scholar 

  • Stülke J, Hanschke R, Hecker M (1993) Temporal activation of beta-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. J Gen Microbiol 139:2041–2045

    Article  Google Scholar 

  • Swinfield TJ, Janniere L, Ehrlich SD, Minton NP (1991) Characterization of a region of the Enterococcus faecalis plasmid pAM beta 1 which enhances the segregational stability of pAM beta 1-derived cloning vectors in Bacillus subtilis. Plasmid 26:209–221

    Article  CAS  Google Scholar 

  • Tobisch S, Zühlke D, Bernhardt J, Stülke J, Hecker M (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol 181:6996–7004

    Article  CAS  Google Scholar 

  • Togna AP, Shuler ML, Wilson DB (1993) Effects of plasmid copy number and runaway plasmid replication on overproduction and excretion of beta-lactamase from Escherichia coli. Biotechnol Prog 9:31–39

    Article  CAS  Google Scholar 

  • Turinsky A, Moir-Blais T, Grundy FJ, Henkin TM (2000) Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. J Bacteriol 182:5611–5614

    Article  CAS  Google Scholar 

  • Weinrauch Y, Msadek T, Kunst F, Dubnau D (1991) Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. J Bacteriol 173:5685–5693

    Article  CAS  Google Scholar 

  • Wong SL (1989) Development of an inducible and enhancible expression and secretion system in Bacillus subtilis. Gene 83:215–223

    Article  CAS  Google Scholar 

  • Wong SL, Price CW, Goldfarb DS, Doi RH (1984) The subtilisin E gene of Bacillus subtilis is transcribed from a sigma 37 promoter in vivo. Proc Natl Acad Sci USA 81:1184–1188

    Article  CAS  Google Scholar 

  • Yansura DG, Henner DJ (1984) Use of the Escherichia colilac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci USA 81:439–443

    Article  CAS  Google Scholar 

  • Yon J, Fried M (1989) Precise gene fusion by PCR. Nucleic Acids Res 17:4895

    Article  CAS  Google Scholar 

Download references

Acknowl edgements

We are indebted to Jörg Stülke for providing the ccpA mutant strain B. subtilis GP300. We thank Torsten Koburger for preparing RNA samples from a glucose-limited B. subtilis culture, which were used for the acoA real-time RT-PCR analysis. This work was financially supported by the Ministry of Education, Science, and Culture of Mecklenburg-Vorpommern (FK 0202120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schweder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silbersack, J., Jürgen, B., Hecker, M. et al. An acetoin-regulated expression system of Bacillussubtilis . Appl Microbiol Biotechnol 73, 895–903 (2006). https://doi.org/10.1007/s00253-006-0549-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0549-5

Keywords

Navigation