Skip to main content
Log in

Chemical and enzymatic routes to dihydroxyacetone phosphate

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Stereoselective carbon–carbon bond formation with aldolases has become an indispensable tool in preparative synthetic chemistry. In particular, the dihydroxyacetone phosphate (DHAP)-dependent aldolases are attractive because four different types are available that allow access to a complete set of diastereomers of vicinal diols from achiral aldehyde acceptors and the DHAP donor substrate. While the substrate specificity for the acceptor is rather relaxed, these enzymes show only very limited tolerance for substituting the donor. Therefore, access to DHAP is instrumental for the preparative exploitation of these enzymes, and several routes for its synthesis have become available. DHAP is unstable, so chemical synthetic routes have concentrated on producing a storable precursor that can easily be converted to DHAP immediately before its use. Enzymatic routes have concentrated on integrating the DHAP formation with upstream or downstream catalytic steps, leading to multi-enzyme arrangements with up to seven enzymes operating simultaneously. While the various chemical routes suffer from either low yields, complicated work-up, or toxic reagents or catalysts, the enzymatic routes suffer from complex product mixtures and the need to assemble multiple enzymes into one reaction scheme. Both types of routes will require further improvement to serve as a basis for a scalable route to DHAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ardao I, Benaiges MD, Caminal G, Alvaro G (2006) One step purification-immobilization of fuculose-1-phosphate aldolase, a class II DHAP dependent aldolase, by using metal-chelate supports. Enzyme Microb Technol 39:22–27

    Article  CAS  Google Scholar 

  • Arth HL, Fessner WD (1997) Practical synthesis of 4-hydroxy-3-oxobutylphosphonic acid and its evaluation as a bio-isosteric substrate of DHAP aldolase. Carbohydr Res 305:313–321

    Article  CAS  PubMed  Google Scholar 

  • Ballou CE, Fischer OL (1956) The synthesis of dihydroxyacetone phosphate. J Am Chem Soc 78:1659–1661

    Article  CAS  Google Scholar 

  • Bednarski MD, Simon ES, Bischofberger N, Fessner WD, Kim M-J, Lees W, Saito T, Waldmann H, Whitesides GM (1989) Rabbit muscle aldolase as a catalyst in organic synthesis. J Am Chem Soc 111:627–635

    Article  CAS  Google Scholar 

  • Brockamp H, Kula MR (1990) Staphylococcus carnosus aldolase as catalyst for enzymatic aldol reactions. Tetrahedron Lett 31:7123–7126

    Article  CAS  Google Scholar 

  • Charmantray F, El Blidi L, Gefflaut T, Hecquet L, Bolte J, Lemaire M (2004) Improved straightforward chemical synthesis of dihydroxyacetone phosphate through enzymatic desymmetrization of 2,2-dimethoxypropane-1,3-diol. J Org Chem 69:9310–9312

    Article  CAS  PubMed  Google Scholar 

  • Charmantray F, Dellis P, Samreth S, Hecquet L (2006) An efficient chemoenzymatic route to dihydroxyacetone phosphate from glycidol for the in situ aldolase-mediated synthesis of monosaccharides. Tetrahedron Lett 47:3261–3263

    Article  CAS  Google Scholar 

  • Cheek S, Ginalski K, Zhang H, Grishin NV (2005) A comprehensive update of the sequence and structure classification of kinases. BMC Struct Biol 5:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y-M, Zhu Y, Lin ECC (1987) The organization of the fuc regulon specifying l-fucose dissimilation in Escherichia coli K-12 as determined by gene cloning. Mol Gen Genet 210:331–337

    Article  CAS  PubMed  Google Scholar 

  • Colbran RL, Jones JKN, Matheson NK, Rozema I (1967) A synthesis of dihydroxyacetone phosphate from dihydroxyacetone. Carbohydr Res 4:355–358

    Article  CAS  Google Scholar 

  • Cooper RA (1984) Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol 38:49–68

    Article  CAS  PubMed  Google Scholar 

  • Cooper SJ, Leonard GA, McSweeney SM, Thompson AW, Naismith JH, Qamar S, Plater A, Berry A, Hunter WN (1996) The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold. Structure 4:1303–1315

    Article  CAS  PubMed  Google Scholar 

  • Crans DC, Whitesides GM (1985a) Glycerol kinase: substrate specificity. J Am Chem Soc 107:7008–7018

    Article  Google Scholar 

  • Crans DC, Whitesides GM (1985b) Glycerol kinase: synthesis of dihydroxyacetone phosphate, sn-glycerol-3-phosphate, and chiral analogues. J Am Chem Soc 107:7019–7027

    Article  CAS  Google Scholar 

  • D’Arrigo P, Piergianni V, Pedrocchi-Fantoni G, Servi S (1995) Indirect enzymatic phosphorylation: preparation of dihydroxyacetone phosphate. Chem Commun 2505–2506

  • Dreyer MK, Schulz GE (1993) The spatial structure of the class II L-fuculose-1-phosphate aldolase from Escherichia coli. J Mol Biol 231:549–553

    Article  CAS  PubMed  Google Scholar 

  • Drueckhammer DG, Durrwachter JR, Pedersen RL, Crans DC, Daniels L, Wong C-H (1989) Reversible and in situ formation of organic arsenates and vanadates as organic phosphate mimics in enzymatic reactions: mechanistic investigation of aldol reactions and synthetic applications. J Org Chem 54:70–77

    Article  CAS  Google Scholar 

  • Durany O, de Mas C, Lopez-Santin J (2005) Fed-batch production of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochem 40:707–716

    Article  CAS  Google Scholar 

  • Effenberger F, Straub A (1987) A novel convenient preparation of dihydroxyacetone phosphate and its use in enzymatic aldol reactions. Tetrahedron Lett 28:1641–1644

    Article  CAS  Google Scholar 

  • Erni B, Siebold C, Christen S, Srinivas A, Oberholzer A, Baumann U (2006) Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases. Cell Mol Life Sci 63:890–900

    Article  CAS  PubMed  Google Scholar 

  • Esders TW, Michrina A (1979) Purification and properties of l-a-glycerophosphate oxidase from Streptococcus faecium ATCC 12755. J Biol Chem 254:2710–2715

    Article  CAS  PubMed  Google Scholar 

  • Eyrisch O, Sinerius G, Fessner WD (1993) Facile de novo synthesis and NMR spectroscopic characterization of d-tagatose 1,6-bisphosphate. Carbohydr Res 238:287–306

    Article  CAS  Google Scholar 

  • Ferroni EL, DiTella V, Ghanayem N, Jeske R, Jodlowski C, O’Connell M, Styrsky J, Svoboda R, Venkataraman A, Winkler BM (1999) A three-step preparation of dihydroxyacetone phosphate dimethyl acetal. J Org Chem 64:4943–4945

    Article  CAS  PubMed  Google Scholar 

  • Fessner WD (1998) Enzyme mediated C–C bond formation. Curr Opin Chem Biol 2:85–97

    Article  CAS  PubMed  Google Scholar 

  • Fessner W-D, Eyrisch O (1992) One-pot synthesis of tagatose 1,6-bisphosphate by diastereoselective enzymatic aldol addition. Angew Chem Int Ed 31:56–58

    Article  Google Scholar 

  • Fessner W-D, Walter C (1992) “Artificial metabolisms” for the asymmetric one-pot synthesis of branched-chain saccharides. Angew Chem Int Ed 31:614–616

    Article  Google Scholar 

  • Fessner W-D, Walter C (1996) Enzymatic C–C bond formation in asymmetric synthesis. Top Curr Chem 184:97–194

    Article  Google Scholar 

  • Fessner WD, Sinerius G (1994) Synthesis of dihydroxyacetone phosphate (and isosteric analogues) by enzymatic oxidation-sugars from glycerol. Angew Chem Int Ed 33:209–212

    Article  Google Scholar 

  • Fessner WD, Sinerius G, Schneider A, Dreyer M, Schulz GE, Badia J, Aguilar J (1991) Diastereoselective enzymatic aldol additions: l-rhamnulose and l-fuculose 1-phosphate aldolases from E. coli. Angew Chem Int Ed 30:555–558

    Article  Google Scholar 

  • Fong S, Machajewski TD, Mak CC, Wong CH (2000) Directed evolution of d-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of d- and l-sugars. Chem Biol 7:873–883

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Junceda E, Shen G-J, Sugai T, Wong CH (1995) A new strategy for the cloning, overexpression and one-step purification of 3 DHAP-dependent aldolases-rhamnulose-1-phosphate aldolase, fuculose-1-phosphate aldolase and tagatose-1,6-diphosphate aldolase. Bioorg Med Chem 3:945–953

    Article  CAS  PubMed  Google Scholar 

  • Gefflaut T, Lemaire M, Valentin ML, Bolte J (1997) A novel efficient synthesis of dihydroxyacetone phosphate and bromoacetol phosphate for use in enzymatic aldol syntheses. J Org Chem 62:5920–5922

    Article  CAS  Google Scholar 

  • Gijsen HJM, Qiao L, Fitz W, Wong C-H (1996) Recent advances in the chemoenzymatic synthesis of carbohydrates and carbohydrate mimetics. Chem Rev 96:443–473

    Article  CAS  PubMed  Google Scholar 

  • Hall DR, Bond CS, Leonard GA, Watt I, Berry A, Hunter WN (2002) Structure of tagatose-1,6-bisphosphate aldolase—insight into chiral discrimination, mechanism, and specificity of class II aldolases. J Biol Chem 277:22018–22024

    Article  CAS  PubMed  Google Scholar 

  • Hettwer J (1998) Kinetik aldolasekatalysierter Aldolkondensationen und Prozessoptimierung der glycerin-3-phosphat Synthese, PhD. Universität Bielefeld, Bielefeld

    Google Scholar 

  • Hettwer J, Oldenburg H, Flaschel E (2002) Enzymic routes to dihydroxyacetone phosphate or immediate precursors. J Mol Catal B Enzym 19:215–222

    Article  Google Scholar 

  • Hirschbein BL, Mazenod FP, Whitesides GM (1982) Synthesis of phosphoenolpyruvate and its use in adenosine triphosphate cofactor regeneration. J Org Chem 47:3765–3766

    Article  CAS  Google Scholar 

  • Itoh N, Tujibata Y, Liu JQ (1999) Cloning and overexpression in Escherichia coli of the gene encoding dihydroxyacetone kinase isoenzyme I from Schizosaccharomyces pombe, and its application to dihydroxyacetone phosphate production. Appl Microbiol Biotechnol 51:193–200

    Article  CAS  PubMed  Google Scholar 

  • Jung SH, Jeong JH, Miller P, Wong CH (1994) An efficient multigram-scale preparation of dihydroxyacetone phosphate. J Org Chem 59:7182–7184

    Article  CAS  Google Scholar 

  • Kroemer M, Merkel I, Schulz GE (2003) Structure and catalytic mechanism of l-rhamnulose-1-phosphate aldolase. Biochemistry 42:10560–10568

    Article  CAS  PubMed  Google Scholar 

  • Liu J-Q, Odani M, Yasuoka T, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (2000) Gene cloning and overproduction of low-specificity d-threonine aldolase from Alcaligenes xylosoxidans and its application for production of a key intermediate for parkinsonism drug. Appl Microbiol Biotechnol 54:44–51

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudian M, Noble D, Drake CS, Middleton RF, Montgomery DS, Piercey JE, Ramlakhan D, Todd M, Dawson MJ (1997) An efficient process for the production of N-acetylneuraminic acid using N-acetylneuraminic aldolase. Enzyme Microb Technol 20:393–400

    Article  CAS  PubMed  Google Scholar 

  • Meyer O, Rohmer M, Grosdemange-Billiard C (2004) Short and efficient synthesis of a stock material of dihydroxyacetone phosphate from glycidol. Tetrahedron Lett 45:7921–7923

    Article  CAS  Google Scholar 

  • Meyer O, Ponaire S, Rohmer M, Grosdemange-Billiard C (2006) Lewis acid mediated regioselective ring opening of benzylglycidol with dibenzyl phosphate: short and attractive synthesis of dihydroxyacetone phosphate. Org Lett 8:4347–4350

    Article  CAS  PubMed  Google Scholar 

  • Nagano N, Orengo CA, Thornton JM (2002) One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J Mol Biol 321:741–765

    Article  CAS  PubMed  Google Scholar 

  • Nobelmann B, Lengeler JW (1996) Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol 178:6790–6795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi T, Shiba T (1998) Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis. Biosci Biotechnol Biochem 62:1594–1596

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg H (1998) Kinetische Untersuchungen und Prozessoptimierung der Produktion von Dihydroxyacetonphosphat mit Hilfe der glycerinphosphat-oxidase, PhD. Universität Bielefeld, Bielefeld

    Google Scholar 

  • Operdoes FR (1987) Compartmentation of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol 41:127–151

    Article  Google Scholar 

  • Ozaki A, Toone EJ, von der osten CH, Sinskey AJ, Whitesides GM (1990) Overproduction and substrate specificity of a bacterial fuculose-1-phosphate aldolase: a new enzymatic catalyst for stereocontrolled aldol condensation. J Am Chem Soc 112:4970–4971

    Article  CAS  Google Scholar 

  • Panke S, Wubbolts MG (2005) Advances in biocatalytic synthesis of pharmaceutical intermediates. Curr Opin Chem Biol 9:188–194

    Article  CAS  PubMed  Google Scholar 

  • Pederson RL, Esker J, Wong CH (1991) An improved synthesis of dihydroxyacetone phosphate. Tetrahedron 47:2643–2648

    Article  CAS  Google Scholar 

  • Periana RA, Motiu-DeGrood R, Chaing Y, Hupe DJ (1980) Does substrate rather than protein provide the catalyst for α-proton abstraction in aldolase? J Am Chem Soc 102:3923–3927

    Article  CAS  Google Scholar 

  • Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Eur J Biochem 212:101–105

    Article  CAS  PubMed  Google Scholar 

  • Pradines A, Klaebe A, Perie J, Paul F, Monsan P (1988) Enzymatic synthesis of phosphoric monoesters with alkaline phosphatase in reverse hydrolysis conditions. Tetrahedron 44:6373–6386

    Article  CAS  Google Scholar 

  • Resnick SM, Zehnder AJB (2000) In vitro ATP regeneration from polyphosphate and AMP by polyphosphate: AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A. Appl Environ Microbiol 66:2045–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard JP (1991) Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction’s physiological significance. Biochemistry 30:4581–4585

    Article  CAS  PubMed  Google Scholar 

  • Rowan AS, Hamilton CJ (2006) Recent developments in preparative enzymatic synthesis of carbohydrates. Nat Prod Rep 23:412–443

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Moreno I, Garcia-Garcia JF, Bastida A, Garcia-Junceda E (2004) Multienzyme system for dihydroxyacetone phosphate-dependent aldolase catalyzed C–C bond formation from dihydroxyacetone. Chem Commun 14:1634–1635

    Article  Google Scholar 

  • Sawada H, Takagi Y (1964) The metabolism of l-rhamnose in Escherichia coli, 3. l-Rhamnulose-phosphate aldolase. Biochim Biophys Acta 92:26–32

    CAS  PubMed  Google Scholar 

  • Schoevaart R, van Rantwijk F, Sheldon RA (1999) Carbohydrates from glycerol: an enzymatic four-step, one-pot synthesis. Chem Commun 24:2465–2466

    Article  Google Scholar 

  • Schoevaart R, van Rantwijk F, Sheldon RA (2000a) A four-step enzymatic cascade for the one-pot synthesis of non-natural carbohydrates from glycerol. J Org Chem 65:6940–6943

    Article  CAS  PubMed  Google Scholar 

  • Schoevaart R, van Rantwijk F, Sheldon RA (2000b) Stereochemistry of nonnatural aldol reactions catalyzed by DHAP aldolases. Biotechnol Bioeng 70:349–352

    Article  CAS  PubMed  Google Scholar 

  • Schultz PG, Yin J, Lerner RA (2002) The chemistry of the antibody molecule. Angew Chem Int Ed 41:4427–+

    Article  CAS  Google Scholar 

  • Schürmann M, Sprenger GA (2001) Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases. J Biol Chem 276:11055–11061

    Article  PubMed  Google Scholar 

  • Schürmann M, Schürmann M, Sprenger GA (2002) Fructose 6-phosphate aldolase and 1-deoxy-d-xylulose 5-phosphate synthase from Escherichia coli as tools in enzymatic synthesis of 1-deoxysugars. J Mol Catal B Enzym 19:247–252

    Article  Google Scholar 

  • Shiba T, Tsutsumi K, Ishige K, Noguchi T (2000) Inorganic phosphate and polyphosphate kinase: their novel biological functions and applications. Biochemistry (Moscow) 65:315–323

    CAS  Google Scholar 

  • Silvestri MG, deSantis G, Mitchell M, Wong C-H (2003) Asymmetric aldol reactions using aldolases, In: Denmark SE (ed) Topics in stereochemistry. Wiley, pp 267–342

  • Suau T, Alvaro G, Benaiges MD, Lopez-Santin J (2006) Influence of secondary reactions on the synthetic efficiency of DHAP-aldolases. Biotechnol Bioeng 93:48–55

    Article  CAS  PubMed  Google Scholar 

  • Sun J, van den Heuvel J, Soucaille P, Qu Y, Zeng A-P (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19:263–272

    Article  CAS  PubMed  Google Scholar 

  • Takami M, Suzuki Y (1994) Synthesis of novel phosphatidyldihydroxyacetone via transphosphatidylation reaction by phospholipase D. Biosci Biotechnol Biochem 58:2136–2139

    Article  CAS  Google Scholar 

  • Valentin ML, Bolte J (1995) A convenient synthesis of DHAP from acetone. Bull Soc Chim Fr 132:1167–1171

    CAS  Google Scholar 

  • van Herk T, Hartog AF, Schoemaker HE, Wever R (2006) Simple enzymatic in situ generation of dihydroxyacetone phosphate and its use in a cascade reaction for the production of carbohydrates: Increased efficiency by phosphate cycling. J Org Chem 71:6244–6247

    Article  PubMed  CAS  Google Scholar 

  • Vidal L, Durany O, Suau T, Ferrer P, Benaiges MD, Caminal G (2003) High-level production of recombinant His-tagged rhamnulose 1-phosphate aldolase in Escherichia coli. J Chem Technol Biotechnol 78:1171–1179

    Article  CAS  Google Scholar 

  • von der Osten CH, Sinskey AJ, Barbas CF, Pederson RL, Wang YF, Wong CH (1989) Use of a recombinant bacterial fructose-1,6-diphosphate aldolase in aldol reactions-preparative syntheses of 1-deoxynojirimycin, 1-deoxymannojirimycin, 1,4-dideoxy-1,4-imino-d-arabinitol, and fagomine. J Am Chem Soc 111:3924–3927

    Article  Google Scholar 

  • Whalen LJ, Wong CH (2006) Enzymes in organic synthesis: aldolase-mediated synthesis of iminocyclitols and novel heterocycles. Aldrichimica Acta 39:63–71

    Google Scholar 

  • Wong CH, Whitesides GM (1983) Synthesis of sugars by aldolase-catalyzed condensation reactions. J Org Chem 48:3199–3205

    Article  CAS  Google Scholar 

  • Wong CH, Whitesides GM (1994) Enzymes in synthetic organic chemistry. Pergamon, Tarrytown, NY, USA

    Google Scholar 

  • Wong C-H, Halcomb RL, Ichikawa Y, Kajimoto T (1995) Enzymes in organic synthesis: application to the problems of carbohydrate recognition (part 1). Angew Chem Int Ed 34:412–432

    Article  CAS  Google Scholar 

  • Yanase H, Okuda M, Kita K, Shibata K, Sakai Y, Kato Y (1995) Enzymatic preparation of [1,3-C-13] dihydroxyacetone phosphate from [C-13] methanol and hydroxypyruvate using the methanol-assimilating system of methylotrophic yeasts. Appl Microbiol Biotechnol 43:228–234

    Article  CAS  Google Scholar 

  • Zelic B, Gostovic S, Vuorilehto K, Vasic-Racki D, Takors R (2004) Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol Bioeng 85:638–646

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, van der Donk WA (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 14:583–589

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Michael Schümperli gratefully acknowledges the funding from the European New and Emerging Science and Technology (NEST) project “Eurobiosyn.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Panke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schümperli, M., Pellaux, R. & Panke, S. Chemical and enzymatic routes to dihydroxyacetone phosphate. Appl Microbiol Biotechnol 75, 33–45 (2007). https://doi.org/10.1007/s00253-007-0882-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0882-3

Keywords

Navigation