Skip to main content
Log in

Acetate scavenging activity in Escherichia coli: interplay of acetyl–CoA synthetase and the PEP–glyoxylate cycle in chemostat cultures

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Impairment of acetate production in Escherichia coli is crucial for the performance of many biotechnological processes. Aerobic production of acetate (or acetate overflow) results from changes in the expression of central metabolism genes. Acetyl−CoA synthetase scavenges extracellular acetate in glucose-limited cultures. Once converted to acetyl−CoA, it can be catabolized by the tricarboxylic acid cycle or the glyoxylate pathway. In this work, we assessed the significance of these pathways on acetate overflow during glucose excess and limitation. Gene expression, enzyme activities, and metabolic fluxes were studied in E. coli knock-out mutants related to the glyoxylate pathway operon and its regulators. The relevance of post-translational regulation by AceK-mediated phosphorylation of isocitrate dehydrogenase for pathway functionality was underlined. In chemostat cultures performed at increasing dilution rates, acetate overflow occurs when growing over a threshold glucose uptake rate. This threshold was not affected in a glyoxylate-pathway-deficient strain (lacking isocitrate lyase, the first enzyme of the pathway), indicating that it is not relevant for acetate overflow. In carbon-limited chemostat cultures, gluconeogenesis (maeB, sfcA, and pck), the glyoxylate operon and, especially, acetyl−CoA synthetase are upregulated. A mutant in acs (encoding acetyl−CoA synthetase) produced acetate at all dilution rates. This work demonstrates that, in E. coli, acetate production occurs at all dilution rates and that overflow is the result of unbalanced synthesis and scavenging activities. The over-expression of acetyl−CoA synthetase by cAMP−CRP-dependent induction limits this phenomenon in cultures consuming glucose at low rate, ensuring the recycling of the acetyl−CoA and acetyl−phosphate pools, although establishing an energy-dissipating substrate cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Hamid AM, Attwood MM, Guest JR (2001) Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 147:1483–1498

    CAS  Google Scholar 

  • Aoshima M, Ishii M, Yamagishi A, Oshima T, Igarashi Y (2003) Metabolic characteristics of an isocitrate dehydrogenase defective derivative of Escherichia coli BL21(DE3). Biotechnol Bioeng 84:732–737

    Article  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006–2008

    Article  Google Scholar 

  • Bernal V, Masdemont B, Arense P, Canovas M, Iborra JL (2007) Redirecting metabolic fluxes through cofactor engineering: role of CoA-esters pool during l(−)-carnitine production by Escherichia coli. J Biotechnol 132:110–117

    Article  CAS  Google Scholar 

  • Brown JP, Perham RN (1976) Selective inactivation of transacylase components of 2-oxo acid dehydrogenase multienzyme complexes of Escherichia coli. Biochem J 155:419–427

    CAS  Google Scholar 

  • Castaño-Cerezo S, Pastor J, Renilla S, Bernal V, Iborra J, Canovas M (2009) An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl–CoA node in Escherichia coli. Microbial Cell Factories 8(1):54

    Article  Google Scholar 

  • Chang DE, Shin S, Rhee JS, Pan JG (1999) Acetate metabolism in a pta mutant of Escherichia coli W importance of maintaining acetyl coenzyme a flux for growth and survival. J Bacteriol 181:6656–6663

    CAS  Google Scholar 

  • Chung T, Klumpp DJ, LaPorte DC (1988) Glyoxylate bypass operon of Escherichia coli: cloning and determination of the functional map. J Bacteriol 170(1):386–392

    CAS  Google Scholar 

  • Chung T, Resnik E, Stueland C, LaPorte DC (1993) Relative expression of the products of glyoxylate bypass operon: contributions of transcription and translation. J Bacteriol 175(14):4572–4575

    CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  Google Scholar 

  • De Mey M, Lequeux GJ, Beauprez JJ, Maertens J, Van Horen E, Soetaert WK, Vanrolleghem PA, Vandamme EJ (2007) Comparison of different strategies to reduce acetate formation in Escherichia coli. Biotechnol Prog 23(5):1053–1063. doi:10.1021/bp070170g

    Google Scholar 

  • Dittrich CR, Bennett GN, San K-Y (2005) Characterization of the acetate-producing pathways in Escherichia coli. Biotechnol Prog 21(4):1062–1067. doi:10.1021/bp050073s

    Article  CAS  Google Scholar 

  • Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wuthrich K, Bailey JE, Sauer U (2002) Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184:152–164

    Article  CAS  Google Scholar 

  • Farmer WR, Liao JC (1997) Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol 63(8):3205–3210

    CAS  Google Scholar 

  • Fischer E, Sauer U (2003) A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 278:46446–46451

    Article  CAS  Google Scholar 

  • Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muñiz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, García-Sotelo JS, López-Fuentes A, Porrón-Sotelo L, Alquicira-Hernández S, Medina-Rivera A, Martínez-Flores I, Alquicira-Hernández K, Martínez-Adame R, Bonavides-Martínez C, Miranda-Ríos J, Huerta AM, Mendoza-Vargas A, Collado-Torres L, Taboada B, Vega-Alvarado L, Olvera M, Olvera L, Grande R, Morett E, Collado-Vides J (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Research 39(suppl 1):D98–D105. doi:10.1093/nar/gkq1110

    Article  Google Scholar 

  • Gonidakis S, Finkel SE, Longo VD (2010) Genome-wide screen identifies Escherichia coli TCA-cycle-related mutants with extended chronological lifespan dependent on acetate metabolism and the hypoxia-inducible transcription factor ArcA. Aging Cell 9(5):868–881. doi:10.1111/j.1474-9726.2010.00618.x

    Article  CAS  Google Scholar 

  • Hartree EF (1972) Determination of protein modification of Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  CAS  Google Scholar 

  • Jian J, Zhang S-Q, Shi Z-Y, Wang W, Chen G-Q, Wu Q (2010) Production of polyhydroxyalkanoates by Escherichia coli mutants with defected mixed acid fermentation pathways. Appl Microbiol Biotechnol 87(6):2247–2256. doi:10.1007/s00253-010-2706-0

    Article  CAS  Google Scholar 

  • Kakuda H, Hosono K, Shiroishi K, Ichihara S (1994) Identification and characterization of ackA (acetate kinase A)-pta (phosphotransacetylase) operon and complementation analysis of acetate utilization by and ackA-pta deletion mutant of Escherichia coli. J Biochem 116:916–922

    CAS  Google Scholar 

  • Kleman GL, Strohl WR (1994) Acetate metabolism by Escherichia coli in high-cell-density fermentation. Appl Environ Microbiol 60(11):3952–3958

    CAS  Google Scholar 

  • Kumari S, Beatty CM, Browning DF, Busby SJW, Simel EJ, Hovel-Miner G, Wolfe AJ (2000a) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:4173–4179

    Article  CAS  Google Scholar 

  • Kumari S, Simel EJ, Wolfe AJ (2000b) s70 is the principal sigma factor responsible for transcription of acs, which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:551–554

    Article  CAS  Google Scholar 

  • Lamed R, Zeikus JG (1980) Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144(2):569–578

    CAS  Google Scholar 

  • LaPorte DC, Chung T (1985) A single gene codes for the kinase and phosphatase which regulate isocitrate dehydrogenase. J Biol Chem 260(28):15291–15297

    CAS  Google Scholar 

  • LaPorte DC, Koshland DE (1982) A protein with kinase and phosphatase activities involved in regulation of tricarboxylic acid cycle. Nature 300(5891):458–460

    Article  CAS  Google Scholar 

  • LaPorte DC, Koshland DE (1983) Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation. Nature 305:286–290

    Article  CAS  Google Scholar 

  • Lara AR, Caspeta L, Gosset G, Bolívar F, Ramírez OT (2008) Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol Bioeng 99(4):893–901. doi:10.1002/bit.21664

    Article  CAS  Google Scholar 

  • Lin H, Bennett GN, San K-Y (2005) Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol Bioeng 89(2):148–156. doi:10.1002/bit.20298

    Article  CAS  Google Scholar 

  • Lin H, Castro N, Bennett G, San K-Y (2006) Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Appl Microbiol Biotechnol 71(6):870–874. doi:10.1007/s00253-005-0230-4

    Article  CAS  Google Scholar 

  • Lorca GL, Ezersky A, Lunin VV, Walker JR, Altamentova S, Evdokimova E, Vedadi M, Bochkarev A, Savchenko A (2007) Glyoxylate and pyruvate are antagonistic effectors of the Escherichia coli IclR transcriptional regulator. J Biol Chem 282:16476–16491

    Article  CAS  Google Scholar 

  • Luli GW, Strohl WR (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56(4):1004–1011

    CAS  Google Scholar 

  • Maloy SR, Nunn WD (1982) Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol 149(1):173–180

    CAS  Google Scholar 

  • Matin A, Matin MK (1982) Cellular levels, excretion, and synthesis rates of cyclic AMP in Escherichia coli grown in continuous culture. J Bacteriol 149(3):801–807

    CAS  Google Scholar 

  • Mazumdar S, Clomburg JM, Gonzalez R (2010) Escherichia coli strains engineered for homofermentative production of d-lactic acid from glycerol. Appl Environ Microbiol 76(13):4327–4336. doi:10.1128/aem.00664-10

    Article  CAS  Google Scholar 

  • Nahku R, Valgepea K, Lahtvee P-J, Erm S, Abner K, Adamberg K, Vilu R (2010) Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures. J Biotechnol 145(1):60–65

    Article  CAS  Google Scholar 

  • Nanchen A, Schicker A, Revelles O, Sauer U (2008) Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli. J Bacteriol 190(7):2323–2330. doi:10.1128/jb.01353-07

    Article  CAS  Google Scholar 

  • Nanchen A, Schicker A, Sauer U (2006) Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli. Appl Environ Microbiol 72(2):1164–1172. doi:10.1128/aem.72.2.1164-1172.2006

    Article  CAS  Google Scholar 

  • Park SJ, Cotter PA, Gunsalus RP (1995) Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J Bacteriol 177:6652–6656

    CAS  Google Scholar 

  • Peng L, Shimizu K (2003) Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178

    CAS  Google Scholar 

  • Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J (2005) Glucose metabolism at high density growth of E. coli B and E. coli K: Differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses. Biotechnol Bioeng 90(7):805–820

    Article  CAS  Google Scholar 

  • Resnik E, Pan B, Ramani N, Freundlich M, LaPorte DC (1996) Integration host factor amplifies the induction of the aceBAK operon of Escherichia coli by relieving IclR repression. J Bacteriol 178(9):2715–2717

    CAS  Google Scholar 

  • Saier JMH, Ramseier TM, Reizer J (1996) Regulation of carbon utilization. In: Neidhardt FC (ed) Escherichia coli and Salmonella: molecular and cellular biology, vol 1. American Society for Microbiology Press, Washington D.C., pp 1325–1343

    Google Scholar 

  • San KY, Bennett GN, Berrios-Rivera SJ, Vadali RV, Yang YT, Horton E, Rudolph FB, Sariyar B, Blackwood K (2002) Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng 4:182–192

    Article  CAS  Google Scholar 

  • Sánchez AM, Bennett GN, San K-Y (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7(3):229–239

    Article  Google Scholar 

  • Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23(5):345–357

    Article  CAS  Google Scholar 

  • Shiloach J, Reshamwala S, Noronha SB, Negrete A (2010) Analyzing metabolic variations in different bacterial strains, historical perspectives and current trends—example E. coli. Curr Opin Biotechnol 21(1):21–26

    Article  CAS  Google Scholar 

  • Shin S, Song SG, Lee DS, Pan JG, Park C (1997) Involvement of iclR and rpoS in the induction of acs, the gene for acetyl coenzyme A synthetase of Escherichia coli K-12. FEMS Microbiol Lett 146(1):103–108. doi:10.1111/j.1574-6968.1997.tb10178.x

    Article  CAS  Google Scholar 

  • Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298(5602):2390–2392

    Article  CAS  Google Scholar 

  • Starai VJ, Escalante-Semerena JC (2004) Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci: CMLS 61(16):2020–2030

    CAS  Google Scholar 

  • Sunnarborg A, Klumpp D, Chung T, LaPorte DC (1990) Regulation of the glyoxylate bypass operon: cloning and characterization of iclR. J Bacteriol 172(5):2642–2649

    CAS  Google Scholar 

  • Thao S, Escalante-Semerena JC (2011) Control of protein function by reversible Ne-lysine acetylation in bacteria. Curr Opin Microbiol 14(2):200–204

    Article  CAS  Google Scholar 

  • Vadali RV, Bennett GN, San KY (2004) Applicability of CoA/acetyl-CoA manipulation system to enhance isoamyl acetate production in Escherichia coli. Metab Eng 6:294–299

    Article  CAS  Google Scholar 

  • Valgepea K, Adamberg K, Nahku R, Lahtvee P-J, Arike L, Vilu R (2010) Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 4(1):166

    Article  CAS  Google Scholar 

  • van de Walle M, Shiloach J (1998) Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol Bioeng 57(1):71–78

    Article  Google Scholar 

  • Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–3661. doi:10.1128/aem.72.5.3653-3661.2006

    Article  CAS  Google Scholar 

  • Waegeman H, Beauprez J, Moens H, Maertens J, De Mey M, Foulquie-Moreno M, Heijnen J, Charlier D, Soetaert W (2011) Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiol 11(1):70

    Article  CAS  Google Scholar 

  • Walsh K, Koshland DE (1984) Determination of flux through the branch point of two metabolic cycles. The tricarboxylic acid cycle and the glyoxylate shunt. J Biol Chem 259(15):9646–9654

    CAS  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    Article  CAS  Google Scholar 

  • Zamboni N, Fendt S-M, Ruhl M, Sauer U (2009) 13 C-based metabolic flux analysis. Nat Protocols 4(6):878–892

    Article  CAS  Google Scholar 

  • Zamboni N, Fischer E, Sauer U (2005) FiatFlux—a software for metabolic flux analysis from 13 C-glucose experiments. BMC Bioinforma 6(1):209

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by MCYT project BIO2008-04500-C02-01, and Fundación Séneca-CARM project 08660/PI/08. S. Renilla and J. M. Pastor are recipients of FPU fellowships from MCINN; S. Castaño-Cerezo is a recipient of FPI fellowship from Fundación Séneca-CARM. V. Bernal holds a post-doctoral contract with the University of Murcia. We thank the National Institute of Genetics of Japan for kind gift of Keio Collection strains.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vicente Bernal or Manuel Cánovas.

Additional information

Sergio Renilla and Vicente Bernal equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renilla, S., Bernal, V., Fuhrer, T. et al. Acetate scavenging activity in Escherichia coli: interplay of acetyl–CoA synthetase and the PEP–glyoxylate cycle in chemostat cultures. Appl Microbiol Biotechnol 93, 2109–2124 (2012). https://doi.org/10.1007/s00253-011-3536-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3536-4

Keywords

Navigation