Skip to main content
Log in

Pasteurella multocida CMP-sialic acid synthetase and mutants of Neisseria meningitidis CMP-sialic acid synthetase with improved substrate promiscuity

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cytidine 5′-monophosphate (CMP)-sialic acid synthetases (CSSs) catalyze the formation of CMP-sialic acid from CTP and sialic acid, a key step for sialyltransferase-catalyzed biosynthesis of sialic acid-containing oligosaccharides and glycoconjugates. More than 50 different sialic acid forms have been identified in nature. To facilitate the enzymatic synthesis of sialosides with diverse naturally occurring sialic acid forms and their non-natural derivatives, CMP-sialic acid synthetases with promiscuous substrate specificity are needed. Herein we report the cloning, characterization, and substrate specificity studies of a new CSS from Pasteurella multocida strain P-1059 (PmCSS) and a CSS from Haemophillus ducreyi (HdCSS). Based on protein sequence alignment and substrate specificity studies of these two CSSs and a Neisseria meningitidis CSS (NmCSS), as well as crystal structure modeling and analysis of NmCSS, NmCSS mutants (NmCSS_S81R and NmCSS_Q163A) with improved substrate promiscuity were generated. The strategy of combining substrate specificity studies of enzymes from different sources and protein crystal structure studies can be a general approach for designing enzyme mutants with improved activity and substrate promiscuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–469

    Article  CAS  Google Scholar 

  • Bravo IG, Garcia-Vallve S, Romeu A, Reglero A (2004) Prokaryotic origin of cytidylyltransferases and alpha-ketoacid synthases. Trends Microbiol 12:120–128

    Article  CAS  Google Scholar 

  • Bugla-Ploskonska G, Rybka J, Futoma-Koloch B, Cisowska A, Gamian A, Doroszkiewicz W (2010) Sialic acid-containing lipopolysaccharides of Salmonella O48 strains—potential role in camouflage and susceptibility to the bactericidal effect of normal human serum. Microb Ecol 59:601–613

    Article  CAS  Google Scholar 

  • Cao H, Li Y, Lau K, Muthana S, Yu H, Cheng J, Chokhawala HA, Sugiarto G, Zhang L, Chen X (2009a) Sialidase substrate specificity studies using chemoenzymatically synthesized sialosides containing C5-modified sialic acids. Org Biomol Chem 7:5137–5145

    Article  CAS  Google Scholar 

  • Cao H, Muthana S, Li Y, Cheng J, Chen X (2009b) Parallel chemoenzymatic synthesis of sialosides containing a C5-diversified sialic acid. Bioorg Med Chem Lett 19:5869–5871

    Article  CAS  Google Scholar 

  • Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5:163–176

    Article  CAS  Google Scholar 

  • Ferrero MA, Aparicio LR (2010) Biosynthesis and production of polysialic acids in bacteria. Appl Microbiol Biotechnol 86:1621–1635

    Article  CAS  Google Scholar 

  • Ghalambor MA, Heath EC (1966) The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. IV. Purification and properties of cytidine monophosphate 3-deoxy-d-manno-octulosonate synthetase. J Biol Chem 241:3216–3221

    CAS  Google Scholar 

  • Haft RF, Wessels MR (1994) Characterization of CMP-N-acetylneuraminic acid synthetase of group B Streptococci. J Bacteriol 176:7372–7374

    CAS  Google Scholar 

  • Hartlieb S, Gunzel A, Gerardy-Schahn R, Munster-Kuhnel AK, Kirschning A, Drager G (2008) Chemoenzymatic synthesis of CMP-N-acetyl-7-fluoro-7-deoxy-neuraminic acid. Carbohydr Res 343:2075–2082

    Article  CAS  Google Scholar 

  • Heyes DJ, Levy C, Lafite P, Roberts IS, Goldrick M, Stachulski AV, Rossington SB, Stanford D, Rigby SE, Scrutton NS, Leys D (2009) Structure-based mechanism of CMP-2-keto-3-deoxymanno-octulonic acid synthetase: convergent evolution of a sugar-activating enzyme with DNA/RNA polymerases. J Biol Chem 284:35514–35523

    Article  CAS  Google Scholar 

  • Horsfall LE, Nelson A, Berry A (2010) Identification and characterization of important residues in the catalytic mechanism of CMP-Neu5Ac synthetase from Neisseria meningitidis. FEBS J 277:2779–2790

    Article  CAS  Google Scholar 

  • Jelakovic S, Schulz GE (2001) The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogs. J Mol Biol 312:143–155

    Article  CAS  Google Scholar 

  • Krapp S, Munster-Kuhnel AK, Kaiser JT, Huber R, Tiralongo J, Gerardy-Schahn R, Jacob U (2003) The crystal structure of murine CMP-5-N-acetylneuraminic acid synthetase. J Mol Biol 334:625–637

    Article  CAS  Google Scholar 

  • Li Y, Yu H, Cao H, Lau K, Muthana S, Tiwari VK, Son B, Chen X (2008) Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl Microbiol Biotechnol 79:963–970

    Article  CAS  Google Scholar 

  • Li Y, Cao H, Yu H, Chen Y, Lau K, Qu J, Thon V, Sugiarto G, Chen X (2011) Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Mol Biosyst 7:1060–1072

    Article  CAS  Google Scholar 

  • Liu G, Jin C (2004) CMP-N-acetylneuraminic acid synthetase from Escherichia coli K1 is a bifunctional enzyme: identification of minimal catalytic domain for synthetase activity and novel functional domain for platelet-activating factor acetylhydrolase activity. J Biol Chem 279:17738–17749

    Article  CAS  Google Scholar 

  • Mandrell RE, Apicella MA (1993) Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology 187:382–402

    Article  CAS  Google Scholar 

  • Martinez J, Steenbergen S, Vimr E (1995) Derived structure of the putative sialic acid transporter from Escherichia coli predicts a novel sugar permease domain. J Bacteriol 177:6005–6010

    CAS  Google Scholar 

  • Mizanur RM, Pohl NL (2007) Cloning and characterization of a heat-stable CMP-N-acylneuraminic acid synthetase from Clostridium thermocellum. Appl Microbiol Biotechnol 76:827–834

    Article  CAS  Google Scholar 

  • Mizanur RM, Pohl NL (2008) Bacterial CMP-sialic acid synthetases: production, properties, and applications. Appl Microbiol Biotechnol 80:757–765

    Article  CAS  Google Scholar 

  • Moran AP, Prendergast MM, Appelmelk BJ (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol 16:105–115

    Article  CAS  Google Scholar 

  • Morley TJ, Withers SG (2010) Chemoenzymatic synthesis and enzymatic analysis of 8-modified cytidine monophosphate-sialic acid and sialyl lactose derivatives. J Am Chem Soc 132:9430–9437

    Article  CAS  Google Scholar 

  • Mosimann SC, Gilbert M, Dombroswki D, To R, Wakarchuk W, Strynadka NC (2001) Structure of a sialic acid-activating synthetase, CMP-acylneuraminate synthetase in the presence and absence of CDP. J Biol Chem 276:8190–8196

    Article  CAS  Google Scholar 

  • Munster AK, Weinhold B, Gotza B, Muhlenhoff M, Frosch M, Gerardy-Schahn R (2002) Nuclear localization signal of murine CMP-Neu5Ac synthetase includes residues required for both nuclear targeting and enzymatic activity. J Biol Chem 277:19688–19696

    Article  CAS  Google Scholar 

  • Munster-Kuhnel AK, Tiralongo J, Krapp S, Weinhold B, Ritz-Sedlacek V, Jacob U, Gerardy-Schahn R (2004) Structure and function of vertebrate CMP-sialic acid synthetases. Glycobiology 14:43R–51R

    Article  Google Scholar 

  • Oschlies M, Dickmanns A, Haselhorst T, Schaper W, Stummeyer K, Tiralongo J, Weinhold B, Gerardy-Schahn R, von Itzstein M, Ficner R, Munster-Kuhnel AL (2009) A C-terminal phosphatase module conserved in vertebrate CMP-sialic acid synthetases provides a tetramerization interface for the physiologically active enzyme. J Mol Biol 393:83–97

    Article  CAS  Google Scholar 

  • Rauvolfova J, Venot A, Boons GJ (2008) Chemo-enzymatic synthesis of C-9 acetylated sialosides. Carbohydr Res 343:1605–1611

    Article  CAS  Google Scholar 

  • Schauer R (1985) Sialic acids and their role as biological masks. Trends Biochem Sci 10:357–360

    Article  CAS  Google Scholar 

  • Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499

    Article  CAS  Google Scholar 

  • Severi E, Hood DW, Thomas GH (2007) Sialic acid utilization by bacterial pathogens. Microbiology 153:2817–2822

    Article  CAS  Google Scholar 

  • Steenbergen SM, Lichtensteiger CA, Caughlan R, Garfinkle J, Fuller TE, Vimr ER (2005) Sialic acid metabolism and systemic pasteurellosis. Infect Immun 73:1284–1294

    Article  CAS  Google Scholar 

  • Tatum FM, Tabatabai LB, Briggs RE (2009) Sialic acid uptake is necessary for virulence of Pasteurella multocida in turkeys. Microb Pathog 46:337–344

    Article  CAS  Google Scholar 

  • Terada T, Kitazume S, Kitajima K, Inoue S, Ito F, Troy FA, Inoue Y (1993) Synthesis of CMP-deaminoneuraminic acid (CMP-KDN) using the CTP:CMP-3-deoxynonulosonate cytidylyltransferase from rainbow trout testis. Identification and characterization of a CMP-KDN synthetase. J Biol Chem 268:2640–2648

    CAS  Google Scholar 

  • Timmis KN, Boulnois GJ, Bitter-Suermann D, Cabello FC (1985) Surface components of Escherichia coli that mediate resistance to the bactericidal activities of serum and phagocytes. Curr Top Microbiol Immunol 118:197–218

    Article  CAS  Google Scholar 

  • Tullius MV, Munson RS Jr, Wang J, Gibson BW (1996) Purification, cloning, and expression of a cytidine 5′-monophosphate N-acetylneuraminic acid synthetase from Haemophilus ducreyi. J Biol Chem 271:15373–15380

    Article  CAS  Google Scholar 

  • Vann WF, Silver RP, Abeijon C, Chang K, Aaronson W, Sutton A, Finn CW, Lindner W, Kotsatos M (1987) Purification, properties, and genetic location of Escherichia coli cytidine 5′-monophosphate N-acetylneuraminic acid synthetase. J Biol Chem 262:17556–17562

    CAS  Google Scholar 

  • Vimr E, Lichtensteiger C, Steenbergen S (2000) Sialic acid metabolism’s dual function in Haemophilus influenzae. Mol Microbiol 36:1113–1123

    Article  CAS  Google Scholar 

  • Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153

    Article  CAS  Google Scholar 

  • Viswanathan K, Tomiya N, Park J, Singh S, Lee YC, Palter K, Betenbaugh MJ (2006) Expression of a functional Drosophila melanogaster CMP-sialic acid synthetase. Differential localization of the Drosophila and human enzymes. J Biol Chem 281:15929–15940

    Article  CAS  Google Scholar 

  • Warren L, Blacklow RS (1962) The biosynthesis of cytidine 5′-monophospho-N-acetylneuraminic acid by an enzyme from Neisseria meningitidis. J Biol Chem 237:3527–3534

    CAS  Google Scholar 

  • Yu H, Yu H, Karpel R, Chen X (2004) Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg Med Chem 12:6427–6435

    Article  CAS  Google Scholar 

  • Yu H, Chokhawala H, Karpel R, Yu H, Wu B, Zhang J, Zhang Y, Jia Q, Chen X (2005) A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J Am Chem Soc 127:17618–17619

    Article  CAS  Google Scholar 

  • Yu H, Chokhawala HA, Huang S, Chen X (2006a) One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat Protoc 1:2485–2492

    Article  CAS  Google Scholar 

  • Yu H, Huang S, Chokhawala H, Sun M, Zheng H, Chen X (2006b) Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew Chem Int Ed Engl 45:3938–3944

    Article  CAS  Google Scholar 

  • Yu H, Ryan W, Yu H, Chen X (2006c) Characterization of a bifunctional cytidine 5′-monophosphate N-acetylneuraminic acid synthetase cloned from Streptococcus agalactiae. Biotechnol Lett 28:107–113

    Article  CAS  Google Scholar 

  • Yu H, Cheng J, Ding L, Khedri Z, Chen Y, Chin S, Lau K, Tiwari VK, Chen X (2009) Chemoenzymatic synthesis of GD3 oligosaccharides and other disialyl glycans containing natural and non-natural sialic acids. J Am Chem Soc 131:18467–18477

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was support by NIH grants R01GM076360 and R01HD065122, the Alfred P. Sloan Research Fellowship, the Camille Dreyfus Teacher-Scholarship, and the UC-Davis Chancellor’s Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Yu, H., Cao, H. et al. Pasteurella multocida CMP-sialic acid synthetase and mutants of Neisseria meningitidis CMP-sialic acid synthetase with improved substrate promiscuity. Appl Microbiol Biotechnol 93, 2411–2423 (2012). https://doi.org/10.1007/s00253-011-3579-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3579-6

Keywords

Navigation