Skip to main content
Log in

Industrial biotechnology of Pseudomonas putida and related species

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Since their discovery many decades ago, Pseudomonas putida and related subspecies have been intensively studied with regard to their potential application in industrial biotechnology. Today, these Gram-negative soil bacteria, traditionally known as well-performing xenobiotic degraders, are becoming efficient cell factories for various products of industrial relevance including a full range of unnatural chemicals. This development is strongly driven by systems biotechnology, integrating systems metabolic engineering approaches with novel concepts from bioprocess engineering, including novel reactor designs and renewable feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albuquerque MGE, Martino V, Pollet E, AvErous L, Reis MAM (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol 151:66–76

    Article  CAS  Google Scholar 

  • Benndorf D, Thiersch M, Loffhagen N, Kunath C, Harms H (2006) Pseudomonas putida KT2440 responds specifically to chlorophenoxy herbicides and their initial metabolites. Proteomics 6:3319–3329

    Article  CAS  Google Scholar 

  • Beuttler H, Hoffmann J, Jeske M, Hauer B, Schmid R, Altenbuchner J, Urlacher V (2011) Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. App Microbiol Biotechnol 89:1137–1147

    Article  CAS  Google Scholar 

  • Blank LM, Ionidis G, Ebert BE, Buhler B, Schmid A (2008a) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190

    Article  CAS  Google Scholar 

  • Blank LM, Ionidis G, Ebert BE, Bühler B, Schmid A (2008b) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190

    Article  CAS  Google Scholar 

  • Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79:3843–3849

    Article  CAS  Google Scholar 

  • Bosetti A, van Beilen JB, Preusting H, Lageveen RG, Witholt B (1992) Production of primary aliphatic alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme system. Enzyme Microb Tech 14:702–708

    Google Scholar 

  • Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, Tang J, Ruan R (2011) Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol 102:7004–7007

    Article  CAS  Google Scholar 

  • Ciesielski S, Pokoj T, Klimiuk E (2010) Cultivation-dependent and -independent characterization of microbial community producing polyhydroxyalkanoates from raw glycerol. J Microbiol Biotechnol 20:853–861

    Article  CAS  Google Scholar 

  • De Lorenzo V (1994) Designing microbial systems for gene expression in the field. Trends Biotechnol 12:365–371

    Article  Google Scholar 

  • De Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposoon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572

    Google Scholar 

  • De Lorenzo V, Herrero M, Sanchez JM, Timmis K (1998) Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiol Ecol 27:211–224

    Article  Google Scholar 

  • Dean HF, Cheevadhanarak S, Skurray RA, Bayly RC (1989) Characterisation of a degradative plasmid in Pseudomonas putida that controls the expression of 2,4-xylenol degradative genes. FEMS Microbiol Lett 61:153–157

    Article  CAS  Google Scholar 

  • Del Castillo T, Ramos JL (2007) Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 189:6602–6610

    Article  CAS  Google Scholar 

  • Del Castillo T, Ramos JL, Rodriguez-Herva JJ, Fuhrer T, Sauer U, Duque E (2007) Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189:5142–5152

    Article  CAS  Google Scholar 

  • del Castillo T, Duque E, Ramos JL (2008) A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol 190:2331–2339

    Article  CAS  Google Scholar 

  • Dominguez-Cuevas P, Gonzalez-Pastor JE, Marques S, Ramos JL, De Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991

    Article  CAS  Google Scholar 

  • Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from d-glucose. J Am Chem Soc 116:399–400

    Article  CAS  Google Scholar 

  • Dunn NW, Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979

    CAS  Google Scholar 

  • Duque E, Molina-Henares AJ, de la Torre J, Molina-Henares MA, del Castillo T, Lam J, Ramos JL (2007) Towards a genome-wide mutant library of Pseudomonas putida strain KT2440. In: Ramos JL, Filloux A (eds) Pseudomonas. Springer, Netherlands, pp 227–251

    Google Scholar 

  • Ebert BE, Kurth F, Grund M, Blank LM, Schmid A (2011) Response of Pseudomonas putida KT2440 to increased NADH and ATP demand. Appl Environ Microbiol 77:6597–6605

    Article  CAS  Google Scholar 

  • Elbahloul Y, Steinbüchel A (2009) Large-scale production of poly(3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process. Appl Environ Microbiol 75:643–651

    Article  CAS  Google Scholar 

  • Escapa I, Morales V, Martino V, Pollet E, Averous L, Garcia J, Prieto M (2011) Disruption of B-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 89:1583–1598

    Article  CAS  Google Scholar 

  • Faizal I, Dozen K, Hong CS, Kuroda A, Takiguchi N, Ohtake H, Takeda K, Tsunekawa H, Kato J (2005) Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase (organic-aqueous) system. J Ind Microbiol Biotechnol 32:542–547

    Article  CAS  Google Scholar 

  • Fonseca P, Moreno R, Rojo F (2008) Genomic analysis of the role of RNase R in the turnover of Pseudomonas putida mRNAs. J Bacteriol 190:6258–6263

    Article  CAS  Google Scholar 

  • Fu J, Wenzel SC, Perlova O, Wang J, Gross F, Tang Z, Yin Y, Stewart AF, Müller R, Zhang Y (2008) Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res 36:e113

    Article  CAS  Google Scholar 

  • Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:1581–1590

    Article  CAS  Google Scholar 

  • Gross F, Gottschalk D, Müller R (2005) Posttranslational modification of myxobacterial carrier protein domains in Pseudomonas sp. by an intrinsic phosphopantetheinyl transferase. Appl Microbiol Biotechnol 68:66–74

    Article  CAS  Google Scholar 

  • Gross F, Ring MW, Perlova O, Fu J, Schneider S, Gerth K, Kuhlmann S, Stewart AF, Zhang Y, Müller R (2006) Metabolic engineering of Pseudomonas putida for methylmalonyl-CoA biosynthesis to enable complex heterologous secondary metabolite formation. Chem Biol 13:1253–1264

    Article  CAS  Google Scholar 

  • Gross R, Lang K, Bühler K, Schmid A (2010) Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng 105:705–717

    CAS  Google Scholar 

  • Halan B, Schmid A, Buehler K (2010) Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotechnol Bioeng 106:516–527

    Article  CAS  Google Scholar 

  • Halan B, Schmid A, Buehler K (2011) Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. Appl Environ Microbiol 77:1563–1571

    Article  CAS  Google Scholar 

  • Heim S, Ferrer M, Heuer H, Regenhardt D, Nimtz M, Timmis KN (2003) Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. Environ Microbiol 5:1257–1269

    Article  CAS  Google Scholar 

  • Hermes HFM, Sonke T, Peters PJH, van Balken JAM, Kamphuis J, Dijkhuizen L, Meijer EM (1993) Purification and characterization of an l-aminopeptidase from Pseudomonas putida ATCC 12633. Appl Environ Microbiol 59:4330–4334

    CAS  Google Scholar 

  • Herrmann H, Janke D, Krejsa S, Kunze I (1987) Involvement of the plasmid pPGH1 in the phenol degradation of Pseudomonas putida strain H. FEMS Microbiol Lett 43:133–137

    Article  CAS  Google Scholar 

  • Hervas AB, Canosa I, Santero E (2008) Transcriptome analysis of Pseudomonas putida in response to nitrogen availability. J Bacteriol 190:416–420

    Article  CAS  Google Scholar 

  • Hoffmann N, Rehm BHA (2004) Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol Lett 237:1–7

    Article  CAS  Google Scholar 

  • Hüsken LE, Beeftink R, De Bont JAM, Wery J (2001) High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl Microbiol Biotechnol 55:571–577

    Google Scholar 

  • Jimenez JI, Miambres B, Garcia JL, Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841

    Article  CAS  Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Proc Biochem 40:607–619

    Article  CAS  Google Scholar 

  • Kiener A (1992) Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angewandte Chem Inter Edition Engl 31:774–775

    Article  Google Scholar 

  • Kim YH, Cho K, Yun SH, Kim JY, Kwon KH, Yoo JS, Kim SI (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6:1301–1318

    Article  CAS  Google Scholar 

  • Koutinas M, Lam MC, Kiparissides A, Silva-Rocha R, Godinho M, Livingston AG, Pistikopoulos EN, de Lorenzo V, Dos Santos VA, Mantalaris A (2010) The regulatory logic of m-xylene biodegradation by Pseudomonas putida mt-2 exposed by dynamic modelling of the principal node Ps/Pr of the TOL plasmid. Environ Microbiol 12:1705–1718

    Article  CAS  Google Scholar 

  • Koutinas M, Kiparissides A, Lam MC, Silva-Rocha R, Godinho M, de Lorenzo V, Martins dos Santos VAP, Pistikopoulos EN, Mantalaris A (2011) Improving the prediction of Pseudomonas putida mt-2 growth kinetics with the use of a gene expression regulation model of the TOL plasmid. Biochem Eng J 55:108–118

    Article  CAS  Google Scholar 

  • Krayl M, Benndorf D, Loffhagen N, Babel W (2003) Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 3:1544–1552

    Article  CAS  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  CAS  Google Scholar 

  • Leprince A, Janus D, de Lorenzo V, Santos VM, Weber W, Fussenegger M (2012) Streamlining of a Pseudomonas putida genome using a combinatorial deletion method based on minitransposon insertion and the Flp-FRT recombination system. Methods Mol Biol 813:249–266

    Article  Google Scholar 

  • Liu W, Chen GQ (2007) Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Appl Microbiol Biotechnol 76:1153–1159

    Article  CAS  Google Scholar 

  • Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metabol Eng 13:11–17

    Article  CAS  Google Scholar 

  • Malik M, Ganguli A, Ghosh M (2011) Enhancement of bioconversion efficiency of limonin by Pseudmonas putida G7. Int J Food Sci Nutr 63:59–65

    Google Scholar 

  • Martin CH, Wu D, Prather KLJ (2010) Integrated bioprocessing for the pH-Dependent Production of 4-Valerolactone from Levulinate in Pseudomonas putida KT2440. Appl Environ Microb 76:417–424

    Google Scholar 

  • Martínez V, García P, García JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 4:533–547

    Article  CAS  Google Scholar 

  • Martinez-Garcia E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716

    Article  CAS  Google Scholar 

  • Martins Dos Santos VAP, Heim S, Moore ERB, Strätz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1286

    Article  CAS  Google Scholar 

  • Meijnen JP, De Winde JH, Ruijssenaars HJ (2008) Engineering Pseudomonas putida S12 for efficient utilization of d-xylose and l-arabinose. Appl Environ Microbiol 74:5031–5037

    Article  CAS  Google Scholar 

  • Meijnen JP, De Winde JH, Ruijssenaars HJ (2009) Establishment of oxidative d-xylose metabolism in Pseudomonas putida S12. Appl Environ Microbiol 75:2784–2791

    Article  CAS  Google Scholar 

  • Meijnen JP, Verhoef S, Briedjlal AA, De Winde JH, Ruijssenaars HJ (2011) Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Appl Microbiol Biot 90:885–893

    Google Scholar 

  • Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H (2007) Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1. J Bacteriol 189:6849–6860

    Article  CAS  Google Scholar 

  • Morales G, Ugidos A, Rojo F (2006) Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases. Environ Microbiol 8(10):1764–1774

    Article  CAS  Google Scholar 

  • Moreno R, Martinez-Gomariz M, Yuste L, Gil C, Rojo F (2009) The Pseudomonas putida Crc global regulator controls the hierarchical assimilation of amino acids in a complete medium: evidence from proteomic and genomic analyses. Proteomics 9:2910–2928

    Article  CAS  Google Scholar 

  • Nakazawa T, Yokota T (1973) Benzoate metabolism in Pseudomonas putida (arvilla) mt 2: demonstration of two benzoate pathways. J Bacteriol 115:262–267

    CAS  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  Google Scholar 

  • Niewerth H, Bergander K, Chhabra SR, Williams P, Fetzner S (2011) Synthesis and biotransformation of 2-alkyl-4(1H)-quinolones by recombinant Pseudomonas putida KT2440. Appl Microbiol Biot 91:1399–1408

    Google Scholar 

  • Nijkamp K, Westerhof RGM, Ballerstedt H, De Bont JAM, Wery J (2007) Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol 74:617–624

    Article  CAS  Google Scholar 

  • Nikodinovic-Runic J, Flanagan M, Hume AR, Cagney G, O'Connor KE (2009) Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions. Microbiol 155:3348–3361

    Article  CAS  Google Scholar 

  • Nogales J, Palsson BO, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2:79

    Article  CAS  Google Scholar 

  • Ouyang SP, Luo RC, Chen SS, Liu Q, Chung A, Wu Q, Chen GQ (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8:2504–2511

    Article  CAS  Google Scholar 

  • Patel RN, Banerjee A, Ko RY, Howell JM, Li Wen S, Comezoglu FT, Partyka RA, Szarka L (1994) Enzymic preparation of (3R-cis)-3-(acetyloxy)-4-phenyl-2-azetidinone: a taxol side-chain synthon. Biotechnol Appl Biochem 20:23–33

    CAS  Google Scholar 

  • Prakash D, Pandey J, Tiwary B, Jain R (2010) A process optimization for bio-catalytic production of substituted catechols (3-nitrocatechol and 3-methylcatechol). BMC Biotechnol 10:49

    Google Scholar 

  • Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins dos Santos VA (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4:e1000210

    Article  CAS  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    Article  CAS  Google Scholar 

  • Renzi F, Rescalli E, Galli E, Bertoni G (2010) Identification of genes regulated by the MvaT-like paralogues TurA and TurB of Pseudomonas putida KT2440. Environ Microbiol 12:254–263

    Article  CAS  Google Scholar 

  • Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tummler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092

    Article  CAS  Google Scholar 

  • Ronchel MC, Molina L, Witte A, Lutbiz W, Molin S, Ramos JL, Ramos C (1998) Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes. Appl Environ Microbiol 64:4904–4911

    CAS  Google Scholar 

  • Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643

    Article  CAS  Google Scholar 

  • Rühl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656

    Article  CAS  Google Scholar 

  • Santos PM, Benndorf D, Sa-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nat 409:258–268

    Article  CAS  Google Scholar 

  • Schulze B, Wubbolts MG (1999) Biocatalysis for industrial production of fine chemicals. Curr Opinion Biotechnol 10:609–615

    Article  CAS  Google Scholar 

  • Segura A, Godoy P, Van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945

    Article  CAS  Google Scholar 

  • Silva-Rocha R, de Jong H, Tamames J, de Lorenzo V (2011) The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene. BMC Syst Biol 5:191

    Article  CAS  Google Scholar 

  • Sohn SB, Kim TY, Park JM, Lee SY (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 5:739–750

    Article  CAS  Google Scholar 

  • Stephan S, Heinzle E, Wenzel SC, Krug D, Müller R, Wittmann C (2006) Metabolic physiology of Pseudomonas putida for heterologous production of myxochromide. Proc Biochem 41:2146–2152

    Article  CAS  Google Scholar 

  • Stieglitz B, Dicosimo R, Fallon RD (1996) Formation of aliphatic ω-cyanocarboxamide(s) from α,ω-dinitrile(s)—using bio-catalyst having regioselective nitrile hydratase activity derived from Pseudomonas putida. US Patent US 5728556

  • Sun Z, Ramsay J, Guay M, Ramsay B (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol 71:423–431

    Article  CAS  Google Scholar 

  • Sun Z, Ramsay J, Guay M, Ramsay B (2007) Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 74:69–77

    Article  CAS  Google Scholar 

  • Sun Z, Ramsay J, Guay M, Ramsay B (2009) Fed-batch production of unsaturated medium-chain-length polyhydroxyalkanoates with controlled composition by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 82:657–662

    Article  CAS  Google Scholar 

  • Tang H, Yu H, Li Q, Wang X, Gai Z, Yin G, Su F, Tao F, Ma C, Xu P (2011) Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds. J Bacteriol 193:6789–6790

    Article  CAS  Google Scholar 

  • Tao F, Tang H, Gai Z, Su F, Wang X, He X, Xu P (2011a) Genome sequence of Pseudomonas putida Idaho, a unique organic-solvent-tolerant bacterium. J Bacteriol 193:7011–7012

    Article  Google Scholar 

  • Tao F, Liu Y, Luo Q, Su F, Xu Y, Li F, Yu B, Ma C, Xu P (2011b) Novel organic solvent-responsive expression vectors for biocatalysis: application for development of an organic solvent-tolerant biodesulfurizing strain. Bioresour Technol 102:9380–9387

    Google Scholar 

  • Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781

    Article  Google Scholar 

  • Tsirogianni E, Aivaliotis M, Papasotiriou DG, Karas M, Tsiotis G (2006) Identification of inducible protein complexes in the phenol degrader Pseudomonas sp. strain phDV1 by blue native gel electrophoresis and mass spectrometry. Amin Ac 30:63–72

    Article  CAS  Google Scholar 

  • Ütkur FO, Gaykaward S, Buehler B, Schmid A (2011) Regioselective aromatic hydroxylation of quinaldine by water using quinaldine 4-oxidase in recombinant Pseudomonas putida. J Ind Microb Biotechnol 38:1067–1073

    Article  CAS  Google Scholar 

  • Van Der Werf MJ, Overkamp KM, Muilwijk B, Koek MM, Van Der Werff-Van Der Vat BJC, Jellema RH, Coulier L, Hankemeier T (2008) Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources. Mol Biosyst 4:315–327

    Article  CAS  Google Scholar 

  • Van Duuren JBJH (2011) Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate. Dissertation. Wageningen University, The Netherlands

  • Van Duuren JBJH, Brehmer B, Mars AE, Eggink G, dos Santos VM, Sanders JPM (2011a) A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnol Bioeng 108:1298–1306

    Article  CAS  Google Scholar 

  • Van Duuren JBJH, Wijte D, Karge B, Martins dos Santos VA, Yang Y, Mars AE, Eggink G (2011b) pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol Prog (in press)

  • Van Duuren JBJH, Wijte D, Leprince A, Karge B, Puchalka J, Wery J, Dos Santos VAPM, Eggink G, Mars AE (2011c) Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield. J Biotechnol 156:163–172

    Article  CAS  Google Scholar 

  • Verhoef S, Ruijssenaars HJ, de Bont JAM, Wery J (2007) Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J Biotechnol 132:49–56

    Article  CAS  Google Scholar 

  • Verhoef S, Wierckx N, Westerhof RGM, De Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75:931–936

    Article  CAS  Google Scholar 

  • Verhoef S, Ballerstedt H, Volkers RJM, De Winde JH, Ruijssenaars HJ (2010) Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement. Appl Microbiol Biotechnol 87:679–690

    Article  CAS  Google Scholar 

  • Volkers RJM, De Jong AL, Hulst AG, Van Baar BLM, De Bont JAM, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8:1674–1679

    Article  CAS  Google Scholar 

  • Wang HH, Zhou XR, Liu Q, Chen GQ (2011) Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl Microbiol Biotechnol 89:1497–1507

    Article  CAS  Google Scholar 

  • Wenzel SC, Gross F, Zhang Y, Fu J, Stewart AF, Müller R (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering. Chem Biol 12:349–356

    Article  CAS  Google Scholar 

  • Wierckx NJP, Ballerstedt H, De Bont JAM, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227

    Article  CAS  Google Scholar 

  • Wierckx NJP, Ballerstedt H, De Bont JAM, De Winde JH, Ruijssenaars HJ, Wery J (2008) Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production. J Bacteriol 190:2822–2830

    Article  CAS  Google Scholar 

  • Wierckx N, Ruijssenaars HJ, de Winde JH, Schmid A, Blank LM (2009) Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics. J Biotechnol 143:124–129

    Article  CAS  Google Scholar 

  • Wolff JA, MacGregor CH, Eisenberg RC, Phibbs PV Jr (1991) Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa pao. J Bacteriol 173:4700–4706

    CAS  Google Scholar 

  • Wong JW, Watson HA, Bouressa JF, Burns MP, Cawley JJ, Doro AE, Guzek DB, Hintz MA, McCormick EL, Scully DA et al (2002) Biocatalytic oxidation of 2-methylquinoxaline to 2-quinoxalinecarboxylic acid. Org Proc Res Devel 6:477–481

    Article  CAS  Google Scholar 

  • Wu B, Bai Z, Meng X, He B (2010) Efficient production of D-glucosaminic acid from D-glucosamine by Pseudomonas putida GNA5. Biotechnol Prog 27:32–37

    Google Scholar 

  • Yang T, Jung Y, Kang H, Kim T, Park S, Lee S (2011) Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli. Appl Microbiol Biotechnol 90:603–614

    Article  CAS  Google Scholar 

  • Yeom S, Yeom J, Park W (2010) NtrC-sensed nitrogen availability is important for oxidative stress defense in Pseudomonas putida KT2440. J Microbiol 48:153–159

    Article  CAS  Google Scholar 

  • Yu H, Tang H, Wang L, Yao Y, Wu G, Xu P (2011) Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16. J Bacteriol 193:5541–5542

    Article  CAS  Google Scholar 

  • Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY (2006) Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Appl Microbiol Biotechnol 72:797–803

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ignacio Poblete-Castro and Vitor Martins dos Santos acknowledge financial support by the German Federal Ministry of Education (BMBF) via the project “PSysMo” within the ERA-NET initiative “Systems Biology of Microorganisms” as well as the EU-FP7 project “Microme.” Christoph Wittmann, Judith Becker, and Katrin Dohnt acknowledge support by the German Federal Ministry of Education (BMBF) initiative “Infection Genomics” for financing of the project “Urogenomics—systems biology of Pseudomonas and other uropathogenic bacteria” (FKZ 0315833D). All authors thank Evelyn Groschopp for design and creation of the pathway figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Wittmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poblete-Castro, I., Becker, J., Dohnt, K. et al. Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93, 2279–2290 (2012). https://doi.org/10.1007/s00253-012-3928-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3928-0

Keywords

Navigation