Skip to main content

Advertisement

Log in

Bacteriophage recombination systems and biotechnical applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses’ life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  PubMed  CAS  Google Scholar 

  • Araki K, Araki M, Yamamura K-i (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Austin S, Ziese M, Sternberg N (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25:729–736

    Article  PubMed  CAS  Google Scholar 

  • Bigger BW, Tolmachov O, Collombet J-M, Fragkos M, Palaszewski I, Coutelle C (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276:23018–23027

    Article  PubMed  CAS  Google Scholar 

  • Bouhassira EE, Westerman K, Leboulch P (1997) Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 90:3332–3344

    PubMed  CAS  Google Scholar 

  • Broach JR, Guarascio VR, Jayaram M (1982) Recombination within the yeast plasmid 2 μ circle is site-specific. Cell 29:227–234

    Article  PubMed  CAS  Google Scholar 

  • Brown WRA, Lee NCO, Xu Z, Smith M (2011) Serine recombinases as tools for genome engineering. Methods 53:372–379

    Article  PubMed  CAS  Google Scholar 

  • Chavez LC, Calos PM (2011) Therapeutic applications of the PhiC31 integrase system. Cur Gene Ther 11:375–381

    Article  CAS  Google Scholar 

  • Christensen A (2001) Bacteriophage lambda-based expression vectors. Mol Biotechnol 17:219–224

    Article  PubMed  CAS  Google Scholar 

  • Clokie MJ, Kropinski A, Thomason L, Oppenheim A and Court D (2009) Modifying bacteriophage lambda with recombineering. In: Bacteriophages. pp. 239–251: Humana, Totowa

  • Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4:1341

    Article  PubMed  CAS  Google Scholar 

  • Darquet AM, Kreiss P, Schwartz B, Naimi S, Delaere P, Crouzet J, Scherman D (1999) Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Nature 6:209–218

    CAS  Google Scholar 

  • Deneke J, Ziegelin GN, Lurz R, Lanka E (2000) The protelomerase of temperate Escherichia coli phage N15 has cleaving-joining activity. Proc Natl Acad Sci U S A 97:7721–7726

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deneke J, Ziegelin G, Lurz R, Lanka E (2002) Phage N15 telomere resolution target requirements for recognition and processing by the protelomerase. J Biol Chem 277:10410–10419

    Article  PubMed  CAS  Google Scholar 

  • Dillingham MS, Kowalczykowski SC (2008) RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72:642–671

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dupuis M-ÃV, Villion M, Magadán AH, Moineau S (2013) CRISPR-Cas and restriction modification systems are compatible and increase phage resistance. Nat Commun 4:2087

    Article  PubMed  CAS  Google Scholar 

  • Gaj T, Mercer AC, Gersbach CA, Gordley RM, Barbas CF (2011) Structure-guided reprogramming of serine recombinase DNA sequence specificity. Proc Natl Acad Sci U S A 108:498–503

    Article  PubMed Central  PubMed  Google Scholar 

  • Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335:667–678

    Article  PubMed  CAS  Google Scholar 

  • Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97:5995–6000

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Haldimann A, Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 183:6384–6393

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hammerl JA, Klein I, Appel B, Hertwig S (2007) Interplay between the temperate phages PY54 and N15, linear plasmid prophages with covalently closed ends. J Bacteriol 189:8366–8370

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heinrich J, Schultz J, Bosse M, Ziegelin G, Lanka E, Moelling K (2002) Linear closed mini DNA generated by the prokaryotic cleaving-joining enzyme TelN is functional in mammalian cells. J Mol Med 80:648–654

    Article  PubMed  CAS  Google Scholar 

  • Hertwig S, Klein I, Schmidt V, Beck S, Hammerl JA, Appel B (2003) Sequence analysis of the genome of the temperate Yersinia enterocolitica Phage PY54. J Mol Biol 331:605–622

    Article  PubMed  CAS  Google Scholar 

  • Hirano N, Muroi T, Takahashi H, Haruki M (2011) Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol 92:227–239

    Article  PubMed  CAS  Google Scholar 

  • Kay MA, He C-Y, Chen Z-Y (2010) A robust system for production of minicircle DNA vectors. Nat Biotechnol 28:1287–1289

    Article  PubMed  CAS  Google Scholar 

  • Keravala A, Chavez CL, Hu G, Woodard LE, Monahan PE, Calos MP (2011) Long-term phenotypic correction in factor IX knockout mice by using phiC31 integrase-mediated, gene therapy. Gene Ther 18:842–848

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res 38:e92–e92

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kuhstoss S, Rao RN (1991) Analysis of the integration function of the streptomycete bacteriophage φC31. J Mol Biol 222:897–908

    Article  PubMed  CAS  Google Scholar 

  • Le Borgne S, Palmeros BI, Valle F, Bolivar F, Gosset G (1998) pBRINT-Ts: a plasmid family with a temperature-sensitive replicon, designed for chromosomal integration into the lacZ gene of Escherichia coli. Gene 223:213–219

    Article  PubMed  Google Scholar 

  • Lorbach E, Christ N, Schwikardi M, Dröge P (2000) Site-specific recombination in human cells catalyzed by phage λ integrase mutants. J Mol Biol 296:1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Murphy KC (1998) Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180:2063–2071

    PubMed Central  PubMed  CAS  Google Scholar 

  • Murphy KC, Magorzata A, and Wacaw S (2012) Phage recombinases and their applications. In: Advances in Virus Research pp. 367–414: Academic, San Diego

  • Nafissi N, Slavcev R (2012) Construction and characterization of an in-vivo linear covalently closed DNA vector production system. Microb Cell Factories 11:154

    Article  CAS  Google Scholar 

  • Porteus M (2012) Homologous recombination-based gene therapy for the primary immunodeficiencies. Ann NY Acad Sci 1246:131–140

    Article  CAS  Google Scholar 

  • Poteete AR (2001) What makes the bacteriophage λ Red system useful for genetic engineering: molecular mechanism and biological function. FEMS Microbiol Lett 201:9–14

    PubMed  CAS  Google Scholar 

  • Ravin NV (2011) N15: the linear phage-plasmid. Plasmid 65:102–109

    Article  PubMed  CAS  Google Scholar 

  • Ravin V, Ravin N, Casjens S, Ford ME, Hatfull GF, Hendrix RW (2000) Genomic sequence and analysis of the atypical temperate bacteriophage N15. J Mol Biol 299:53–73

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Mouw KW, Montaño SP, Boocock M, Rowland S-J, Stark WM (2010) Orchestrating serine resolvases. Biochem Soc Trans 38:384

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sanger F, Coulson AR, Hong GF, Hill DF, Petersen GB (1982) Nucleotide sequence of bacteriophage λ DNA. J Mol Biol 162:729–773

    Article  PubMed  CAS  Google Scholar 

  • Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stahl FW (1998) Recombination in phage lambda: one geneticist’s historical perspective. Gene 223:95–102

    Article  PubMed  CAS  Google Scholar 

  • Stefan H, Iris K, Rudi L, Erich L, Bernd A (2003) PY54, a linear plasmid prophage of Yersinia enterocolitica with covalently closed ends. Mol Microbiol 48:989–1003

    Article  Google Scholar 

  • Suzuki N, Inui M, Yukawa H (2007) Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:871–878

    Article  PubMed  CAS  Google Scholar 

  • Thomason L, Court DL, Bubunenko M, Costantino N, Wilson H, Datta S, Oppenheim A (2001) Recombineering: genetic engineering in bacteria using homologous recombination. In Current Protocols in Molecular Biology. Wiley, New York

    Google Scholar 

  • Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54

    Article  PubMed  CAS  Google Scholar 

  • Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage [phgr] C31 integrase. Mol Cell Biol 21:3926–3934

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407:193–221

    Article  PubMed  CAS  Google Scholar 

  • Valentin N, Rybchin ANS (1999) The plasmid prophage N15: a linear DNA with covalently closed ends. Mol Microbiol 33:895–903

    Article  Google Scholar 

  • Wigley DB (2013) Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11:9–13

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding to RS, and the Ontario Graduate Scholarship (OGS), the Waterloo Institute of Nanotechnology Fellowship (WIN), and the CIHR-DSECT scholarships for funding to NN.

Conflict of interest

The authors declare that there is no conflict of interests in the submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick Slavcev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nafissi, N., Slavcev, R. Bacteriophage recombination systems and biotechnical applications. Appl Microbiol Biotechnol 98, 2841–2851 (2014). https://doi.org/10.1007/s00253-014-5512-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5512-2

Keywords

Navigation