Skip to main content
Log in

Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recent advances in the technology available for culture-independent methods for identification and enumeration of environmental bacteria have invigorated interest in the study of the role of chicken intestinal microbiota in health and productivity. Chickens harbour unique and diverse bacterial communities that include human and animal pathogens. Increasing public concern about the use of antibiotics in the poultry industry has influenced the ways in which poultry producers are working towards improving birds’ intestinal health. Effective means of antibiotic-independent pathogen control through competitive exclusion and promotion of good protective microbiota are being actively investigated. With the realisation that just about any change in environment influences the highly responsive microbial communities and with the abandonment of the notion that we can isolate and investigate a single species of interest outside of the community, came a flood of studies that have attempted to profile the intestinal microbiota of chickens under numerous conditions. This review aims to address the main issues in investigating chicken microbiota and to summarise the data acquired to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amit-Romach E, Sklan D, Uni Z (2004) Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poult Sci 83:1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Angelakis E, Raoult D (2010) The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain. PLoS One 5:e10463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Apajalahti J, Kettunen A, Graham H (2004) Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World’s Poultry Sci J 60:223–232

    Article  Google Scholar 

  • Baffoni L, Gaggia F, Di Gioia D, Santini C, Mogna L, Biavati B (2012) A Bifidobacterium-based synbiotic product to reduce the transmission of C. jejuni along the poultry food chain. Int J Food Microbiol 157:156–161

    Article  PubMed  Google Scholar 

  • Barnes EM (1979) The intestinal microflora of poultry and game birds during life and after storage. Address of the president of the Society for Applied Bacteriology delivered at a meeting of the society on 10 January 1979. J Appl Bacteriol 46:407–419

    Article  PubMed  CAS  Google Scholar 

  • Baurhoo B, Phillip L, Ruiz-Feria CA (2007) Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult Sci 86:1070–1078

    Article  PubMed  CAS  Google Scholar 

  • Bent SJ, Pierson JD, Forney LJ, Danovaro R, Luna GM, Dell’anno A, Pietrangeli B (2007) Measuring species richness based on microbial community fingerprints: the emperor has no clothes. Appl Environ Microbiol 73(7):2399–2401

    Article  PubMed Central  PubMed  Google Scholar 

  • Brisbin JT, Gong J, Orouji S, Esufali J, Mallick AI, Parvizi P, Shewen PE, Sharif S (2011) Oral treatment of chickens with lactobacilli influences elicitation of immune responses. Clin Vaccine Immunol 18:1447–1455

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brisbin JT, Gong J, Parvizi P, Sharif S (2010) Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clin Vaccine Immunol 17:1337–1343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brisbin JT, Gong J, Sharif S (2008) Interactions between commensal bacteria and the gut-associated immune system of the chicken. Anim Health Res Rev 9:101–110

    Article  PubMed  Google Scholar 

  • Buhnik-Rosenblau K, Matsko-Efimov V, Jung M, Shin H, Danin-Poleg Y, Kashi Y (2012) Indication for co-evolution of Lactobacillus johnsonii with its hosts. BMC Microbiol 12:149

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clench MH, Mathias JR (1995) The avian cecum: a review. Wilson Bull 107:93–121

    Google Scholar 

  • Collado MC, Gueimonde M, Hernandez M, Sanz Y, Salminen S (2005) Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot 68:2672–2678

    PubMed  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975

    Article  PubMed Central  PubMed  Google Scholar 

  • Engberg RM, Hedemann MS, Steenfeldt S, Jensen BB (2004) Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult Sci 83:925–938

    Article  PubMed  CAS  Google Scholar 

  • Fajardo P, Pastrana L, Mendez J, Rodriguez I, Fucinos C, Guerra NP (2012) Effects of feeding of two potentially probiotic preparations from lactic acid bacteria on the performance and faecal microflora of broiler chickens. Sci World J 2012:562635

    Article  Google Scholar 

  • Feng Y, Gong J, Yu H, Jin Y, Zhu J, Han Y (2010) Identification of changes in the composition of ileal bacterial microbiota of broiler chickens infected with Clostridium perfringens. Vet Microbiol 140:116–121

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Pan I, Mendoza M, Mate JI (2013) Whey protein isolate edible films with essential oils incorporated to improve the microbial quality of poultry. J Sci Food Agr 93:2986–2994

    Article  CAS  Google Scholar 

  • Fryklund B, Tullus K, Berglund B, Burman LG (1992) Importance of the environment and the faecal flora of infants, nursing staff and parents as sources of gram-negative bacteria colonizing newborns in three neonatal wards. Infection 20:253–257

    Article  PubMed  CAS  Google Scholar 

  • Fuller R (1973) Differences in the microfloras of the intestine and the bursa of Fabricius as illustrated by the coliform-Lactobacillus ratio in the two sites. Br Poult Sci 14:221–224

    Article  PubMed  CAS  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  PubMed  CAS  Google Scholar 

  • Gasaway WC, White RG, Holleman DF (1976) Digestion of dry matter and absorption of water in the intestine and cecum of rock ptarmigan. Condor 78:77–84

    Article  Google Scholar 

  • Geier MS, Torok VA, Allison GE, Ophel-Keller K, Hughes RJ (2009) Indigestible carbohydrates alter the intestinal microbiota but do not influence the performance of broiler chickens. J Appl Microbiol 106:1540–1558

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DL (1989) Absorption by the cecum of wild birds: is there interspecific variation. J Exp Zool Suppl 3:103–110

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Forster RJ, Yu H, Chambers JR, Wheatcroft R, Sabour PM, Chen S (2002) Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol Ecol 41:171–179

    Article  PubMed  CAS  Google Scholar 

  • Grant A, Ogilvie LA (2004) Name that microbe: rapid identification of taxa responsible for individual fragments in fingerprints of microbial community structure. Mol Ecol Notes 4:133–136

    Article  CAS  Google Scholar 

  • Guardia S, Konsak B, Combes S, Levenez F, Cauquil L, Guillot JF, Moreau-Vauzelle C, Lessire M, Juin H, Gabriel I (2011) Effects of stocking density on the growth performance and digestive microbiota of broiler chickens. Poult Sci 90:1878–1889

    Article  PubMed  CAS  Google Scholar 

  • Guo FC, Williams BA, Kwakkel RP, Li HS, Li XP, Luo JY, Li WK, Verstegen MW (2004) Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens. Poult Sci 83:175–182

    Article  PubMed  CAS  Google Scholar 

  • Haghighi HR, Gong J, Gyles CL, Hayes MA, Zhou H, Sanei B, Chambers JR, Sharif S (2006) Probiotics stimulate production of natural antibodies in chickens. Clin Vaccine Immunol 13:975–980

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Havenstein G, Ferket P, Qureshi M (2003) Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 8:1500–1508

    Article  Google Scholar 

  • Holzapfel WH, Haberer P, Geisen R, Bjorkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:365S–373S

    PubMed  CAS  Google Scholar 

  • Hughes RJ (2001) Variation in the digestive capacity of the broiler chicken. Rec Adv Anim Nutr Aust 13:153–161

    Google Scholar 

  • Hughes RJ (2008) Relationship between digesta transit time and apparent metabolisable energy value of wheat in chickens. Br Poult Sci 49:716–720

    Article  PubMed  CAS  Google Scholar 

  • Hume ME, Kubena LF, Edrington TS, Donskey CJ, Moore RW, Ricke SC, Nisbet DJ (2003) Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis. Poult Sci 82:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Jin LZ, Ho YW, Abdullah N, Jalaludin S (2000) Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult Sci 79:886–891

    Article  PubMed  CAS  Google Scholar 

  • Jung BG, Ko JH, Lee BJ (2010) Dietary supplementation with a probiotic fermented four-herb combination enhances immune activity in broiler chicks and increases survivability against Salmonella Gallinarum in experimentally infected broiler chicks. J Vet Med Sci 72:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Kergourlay G, Messaoudi S, Dousset X, Prevost H (2012) Genome sequence of Lactobacillus salivarius SMXD51, a potential probiotic strain isolated from chicken cecum, showing anti-campylobacter activity. J Bacteriol 194:3008–3009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Knap I, Kehlet AB, Bennedsen M, Mathis GF, Hofacre CL, Lumpkins BS, Jensen MM, Raun M, Lay A (2011) Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poult Sci 90:1690–1694

    Article  PubMed  CAS  Google Scholar 

  • Knap I, Lund B, Kehlet AB, Hofacre C, Mathis G (2010) Bacillus licheniformis prevents necrotic enteritis in broiler chickens. Avian Dis 54:931–935

    Article  PubMed  CAS  Google Scholar 

  • Koleilat A (2012) Probiotics in gastrointestinal disorders. In: Elzouki AY (ed) Textbook of clinical pediatrics. Springer, Berlin Heidelberg

    Google Scholar 

  • Konsak B, Stanley D, Haring VR, Geier MS, Hughes RJ, Howarth GS, Crowley TM, Moore RJ (2013) Identification of differential duodenal gene expression levels and microbiota abundance correlated with differences in energy utilisation in chickens. Animal Production Science

  • Kurekci C, Padmanabha J, Bishop-Hurley SL, Hassan E, Al Jassim RA, McSweeney CS (2013) Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments. Int J Food Microbiol 166:450–457

    Article  PubMed  CAS  Google Scholar 

  • Lee KW, Li G, Lillehoj HS, Lee SH, Jang SI, Babu US, Lillehoj EP, Neumann AP, Siragusa GR (2011) Bacillus subtilis-based direct-fed microbials augment macrophage function in broiler chickens. Res Vet Sci 91:e87–e91

    Article  PubMed  CAS  Google Scholar 

  • Lev M, Briggs CAE (1956) The gut flora of the chicks. I. The flora of newly hatched chicks. J Appl Bacteriol 19:36–38

    Article  Google Scholar 

  • Levkut M, Revajova V, Laukova A, Sevcikova Z, Spisakova V, Faixova Z, Levkutova M, Strompfova V, Pistl J (2012) Leukocytic responses and intestinal mucin dynamics of broilers protected with Enterococcus faecium EF55 and challenged with Salmonella Enteritidis. Res Vet Sci 93:195–201

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Hofacre C, Smith F, Lee MD (2008) Effects of feed additives on the development on the ileal bacterial community of the broiler chicken. Animal 2:669–676

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD (2003) Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol 69:6816–6824

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luo YH, Peng HW, Wright AD, Bai SP, Ding XM, Zeng QF, Li H, Zheng P, Su ZW, Cui RY, Zhang KY (2013) Broilers fed dietary vitamins harbor higher diversity of cecal bacteria and higher ratio of Clostridium, Faecalibacterium, and Lactobacillus than broilers with no dietary vitamins revealed by 16S rRNA gene clone libraries. Poult Sci 92:2358–2366

    Article  PubMed  CAS  Google Scholar 

  • Mead GC (1989) Microbes of the avian cecum: types present and substrates utilized. J Exp Zool Suppl 3:48–54

    Article  PubMed  CAS  Google Scholar 

  • Mead GC (1997) Bacteria in the gastrointestinal tract of birds. In: Mackie RJ, White BA, Isaacson RE (eds) Gastrointestinal microbiology 2. Gastrointestinal microbes and host interactions. Chapman and Hall, New York

    Google Scholar 

  • Meijer K, de Vos P, Priebe MG (2010) Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care 13:715–721

    Article  PubMed  CAS  Google Scholar 

  • Meimandipour A, Shuhaimi M, Hair-Bejo M, Azhar K, Kabeir BM, Rasti B, Yazid AM (2009) In vitro fermentation of broiler cecal content: the role of lactobacilli and pH value on the composition of microbiota and end products fermentation. Lett Appl Microbiol 49:415–420

    Article  PubMed  CAS  Google Scholar 

  • Morishita TY, Aye PP, Harr BS, Cobb CW, Clifford JR (1997) Evaluation of an avian-specific probiotic to reduce the colonization and shedding of Campylobacter jejuni in broilers. Avian Dis 41:850–855

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nakphaichit M, Thanomwongwattana S, Phraephaisarn C, Sakamoto N, Keawsompong S, Nakayama J, Nitisinprasert S (2011) The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. Poult Sci 90:2753–2765

    Article  PubMed  CAS  Google Scholar 

  • Nordentoft S, Molbak L, Bjerrum L, De Vylder J, Van Immerseel F, Pedersen K (2011) The influence of the cage system and colonisation of Salmonella Enteritidis on the microbial gut flora of laying hens studied by T-RFLP and 454 pyrosequencing. BMC Microbiol 11:187

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nurmi E, Rantala M (1973) New aspects of Salmonella infection in broiler production. Nature 241:210–211

    Article  PubMed  CAS  Google Scholar 

  • Obst BS, Diamond JM (1989) Interspecific variation in sugar and amino acid transport by the avian cecum. J Exp Zool Suppl 3:117–126

    Article  PubMed  CAS  Google Scholar 

  • Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, McSweeney CS, McHardy AC, Morrison M (2011) Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 333:646–648

    Article  PubMed  CAS  Google Scholar 

  • Rehman HU, Vahjen W, Awad WA, Zentek J (2007) Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch Anim Nutr 61:319–335

    Article  PubMed  CAS  Google Scholar 

  • Robyn J, Rasschaert G, Hermans D, Pasmans F, Heyndrickx M (2013) Is allicin able to reduce Campylobacter jejuni colonization in broilers when added to drinking water? Poult Sci 92:1408–1418

    Article  PubMed  CAS  Google Scholar 

  • Salanitro JP, Fairchilds IG, Zgornicki YD (1974) Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum. Appl Microbiol 27:678–687

    PubMed Central  PubMed  CAS  Google Scholar 

  • Samli HE, Senkoylu N, Koc F, Kanter M, Agma A (2007) Effects of Enterococcus faecium and dried whey on broiler performance, gut histomorphology and intestinal microbiota. Arch Anim Nutr 61:42–49

    Article  PubMed  Google Scholar 

  • Santini C, Baffoni L, Gaggia F, Granata M, Gasbarri R, Di Gioia D, Biavati B (2010) Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol 141(Suppl 1):S98–S108

    Article  PubMed  Google Scholar 

  • Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  PubMed  CAS  Google Scholar 

  • Scupham AJ (2009) Campylobacter colonization of the Turkey intestine in the context of microbial community development. Appl Environ Microbiol 75:3564–3571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sekelja M, Rud I, Knutsen SH, Denstadli V, Westereng B, Naes T, Rudi K (2012) Abrupt temporal fluctuations in the chicken fecal microbiota are explained by its gastrointestinal origin. Appl Environ Microbiol 78:2941–2948

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17:741–754

    Article  PubMed  CAS  Google Scholar 

  • Shin MS, Han SK, Ji AR, Kim KS, Lee WK (2008) Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J Appl Microbiol 105:2203–2212

    Article  PubMed  CAS  Google Scholar 

  • Simpson JM, McCracken VJ, Gaskins HR, Mackie RI (2000) Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Appl Environ Microbiol 66:4705–4714

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Singh KM, Shah T, Deshpande S, Jakhesara SJ, Koringa PG, Rank DN, Joshi CG (2012) High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers. Mol Biol Rep 39:10595–10602

    Article  PubMed  CAS  Google Scholar 

  • Singh KM, Shah TM, Reddy B, Deshpande S, Rank DN, Joshi CG (2013) Taxonomic and gene-centric metagenomics of the fecal microbiome of low and high feed conversion ratio (FCR) broilers. J Appl Genet (in print)

  • Siragusa GR, Haas GJ, Matthews PD, Smith RJ, Buhr RJ, Dale NM, Wise MG (2008) Antimicrobial activity of lupulone against Clostridium perfringens in the chicken intestinal tract jejunum and caecum. J Antimicrob Chemother 61:853–858

    Article  PubMed  CAS  Google Scholar 

  • Sklan D, Shachaf B, Baron J, Hurwitz S (1978) Retrograde movement of digesta in the duodenum of the chick: extent, frequency, and nutritional implications. J Nutr 108:1485–1490

    PubMed  CAS  Google Scholar 

  • Skraban J, Dzeroski S, Zenko B, Tusar L, Rupnik M (2013) Changes of poultry faecal microbiota associated with Clostridium difficile colonisation. Vet Microbiol 165:416–424

    Article  PubMed  Google Scholar 

  • Spring P, Wenk C, Dawson KA, Newman KE (2000) The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult Sci 79:205–211

    Article  PubMed  CAS  Google Scholar 

  • Stanley D, Denman SE, Hughes RJ, Geier MS, Crowley TM, Chen H, Haring VR, Moore RJ (2012a) Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl Microbiol Biotechnol 96:1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Stanley D, Geier MS, Denman SE, Haring VR, Crowley TM, Hughes RJ, Moore RJ (2013a) Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Vet Microbiol 164:85–92

    Article  PubMed  Google Scholar 

  • Stanley D, Geier MS, Hughes RJ, Denman SE, Moore RJ (2013b) Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One. doi:10.1371/journal.pone.0084290

    Google Scholar 

  • Stanley D, Keyburn AL, Denman SE, Moore RJ (2012b) Changes in the caecal microflora of chickens following Clostridium perfringens challenge to induce necrotic enteritis. Vet Micro 159:155–162

    Article  Google Scholar 

  • Thirabunyanon M, Thongwittaya N (2012) Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella Enteritidis infection. Res Vet Sci 93:74–81

    Article  PubMed  CAS  Google Scholar 

  • Tillman GE, Haas GJ, Wise MG, Oakley B, Smith MA, Siragusa GR (2011) Chicken intestine microbiota following the administration of lupulone, a hop-based antimicrobial. FEMS Microbiol Ecol 77:395–403

    Article  PubMed  CAS  Google Scholar 

  • Torok VA, Hughes RJ, Mikkelsen LL, Perez-Maldonado R, Balding K, McAlpine R, Percy NJ, Ophel-Keller K (2011) Identification and characterization of potential performance related gut microbiota in broiler chickens across various feeding trials. Appl Environ Microbiol 77:5868–5878

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Torok VA, Ophel-Keller K, Loo M, Hughes RJ (2008) Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl Environ Microbiol 74:783–791

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van der Hoeven-Hangoor E, van der Vossen JM, Schuren FH, Verstegen MW, de Oliveira JE, Montijn RC, Hendriks WH (2013) Ileal microbiota composition of broilers fed various commercial diet compositions. Poult Sci 92:2713–2723

    Article  PubMed  Google Scholar 

  • van der Wielen PW, Keuzenkamp DA, Lipman LJ, van Knapen F, Biesterveld S (2002a) Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microb Ecol 44:286–293

    Article  PubMed  CAS  Google Scholar 

  • van der Wielen PW, Lipman LJ, van Knapen F, Biesterveld S (2002b) Competitive exclusion of Salmonella enterica serovar Enteritidis by Lactobacillus crispatus and Clostridium lactatifermentans in a sequencing fed-batch culture. Appl Environ Microbiol 68:555–559

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Videnska P, Sisak F, Havlickova H, Faldynova M, Rychlik I (2013) Influence of Salmonella enterica serovar Enteritidis infection on the composition of chicken cecal microbiota. BMC Vet Res 9:140

    Article  PubMed Central  PubMed  Google Scholar 

  • Vieira de Souza F, Roque R, Silva Moreira JL, Resende de Souza M, Nicoli JR, Neumann E, Cantini Nunes A (2012) Transfer of antibiotic resistance determinants between lactobacilli isolates from the gastrointestinal tract of chicken. Benef Microb 3:137–144

    Article  CAS  Google Scholar 

  • Wei S, Morrison M, Yu Z (2013) Bacterial census of poultry intestinal microbiome. Poult Sci 92:671–683

    Article  PubMed  CAS  Google Scholar 

  • Wu SB, Stanley D, Rodgers N, Swick RA, Moore RJ (2014) Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens. Vet Microbiol 169:188–197

    Article  PubMed  Google Scholar 

  • Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ (2003) Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult Sci 82:1030–1036

    Article  PubMed  CAS  Google Scholar 

  • Yegani M, Korver DR (2008) Factors affecting intestinal health in poultry. Poult Sci 87:2052–2063

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Wang G, Siegel P, He C, Wang H, Zhao W, Zhai Z, Tian F, Zhao J, Zhang H, Sun Z, Chen W, Zhang Y, Meng H (2013) Quantitative genetic background of the host influences gut microbiomes in chickens. Sci Rep 3:1163

    PubMed Central  PubMed  Google Scholar 

  • Zhou H, Gong J, Brisbin JT, Yu H, Sanei B, Sabour P, Sharif S (2007) Appropriate chicken sample size for identifying the composition of broiler intestinal microbiota affected by dietary antibiotics, using the polymerase chain reaction-denaturing gradient gel electrophoresis technique. Poult Sci 86:2541–2549

    Article  PubMed  CAS  Google Scholar 

  • Zhu XY, Joerger RD (2003) Composition of microbiota in content and mucus from cecae of broiler chickens as measured by fluorescent in situ hybridization with group-specific, 16S rRNA-targeted oligonucleotide probes. Poult Sci 82:1242–1249

    Article  PubMed  CAS  Google Scholar 

  • Zhu XY, Zhong T, Pandya Y, Joerger RD (2002) 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol 68:124–137

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our research groups obtain significant support from the Poultry CRC, established and supported under the Australian Government’s Cooperative Research Centres Program. We wish to thank the Poultry CRC for their ongoing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Stanley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, D., Hughes, R.J. & Moore, R.J. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol 98, 4301–4310 (2014). https://doi.org/10.1007/s00253-014-5646-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5646-2

Keywords

Navigation