Skip to main content
Log in

l-Arabinose/d-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of l-arabinose to l-arabonate with Saccharomyces cerevisiae

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoki S, Ishikura S, Asada Y, Usami N, Hara A (2001) Identity of dimeric dihydrodiol dehydrogenase as NADP+-dependent d-xylose dehydrogenase in pig liver. Chem Biol Interact 130–132:775–784

    Article  PubMed  Google Scholar 

  • Becker J, Boyles E (2003) A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–50. doi:10.1128/AEM.69.7.4144-4150.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boer H, Maaheimo H, Koivula A, Penttilä M, Richard P (2010) Identification in Agrobacterium tumefaciens of the d-galacturonic acid dehydrogenase gene. Appl Microbiol Biotechnol 86:901–909

    Article  CAS  PubMed  Google Scholar 

  • Brodie AF, Lipmann F (1955) Identification of a gluconolactonase. J Biol Chem 212:677–685

    CAS  PubMed  Google Scholar 

  • Carbone V, Endo S, Sumii R, Chung RP, Matsunaga T, Hara A, El-Kabbani O (2008a) Structures of dimeric dihydrodiol dehydrogenase apoenzyme and inhibitor complex: probing the subunit interface with site-directed mutagenesis. Proteins 70:176–187

    Article  CAS  PubMed  Google Scholar 

  • Carbone V, Hara A, El-Kabbani O (2008b) Structural and functional features of dimeric dihydrodiol dehydrogenase. Cell Mol Life Sci 65:1464–1474

    Article  CAS  PubMed  Google Scholar 

  • Conchie J, Hay AJ, Strachan I, Levvy GA (1967) Inhibition of glycosidases by aldonolactones of corresponding configuration. Biochem J 102:929–941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dilworth MJ, Arvas R, McKay IA, Saroso S, Glenn AR (1986) Pentose metabolism in Rhizobium leguminosarum MNF300 and in Cowpea Rhizobium NGR234. J Gen Microbiol 132:2133–2142

    Google Scholar 

  • Duncan MJ (1979) l-Arabinose metabolism in rhizobia. J Gen Microbiol 113:177–179

    Article  CAS  Google Scholar 

  • Entian KD, Kötter P (1998) Yeast mutant and plasmid collections In: Brown AJP, Tuite MF, editors. Yeast gene analysis. Method Microbiol 26:431–449

  • Ford G, Ellis EM (2002) Characterization of Ypr1p from Saccharomyces cerevisiae as a 2-methylbutyraldehyde reductase. Yeast 19:1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnsen U, Sutter J-M, Zaiss H, Schönheit P (2013) l-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of l-arabinose dehydrogenase. Extremophiles 17:897–909

    Article  CAS  PubMed  Google Scholar 

  • Johnson MS, Overington JP (1993) A structural basis for sequence comparisons. An evaluation of scoring methodologies. J Mol Biol 233:716–738

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Willett P (1995) Docking small-molecule ligands into active sites. Curr Opin Biotechnol 6:652–656

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Honda K, Sakamoto K, Shimizu S (2007) Microbial enzymes involved in lactone compound metabolism and their biotechnological applications. Appl Microbiol Biotechnol 75:257–266

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H (2008) Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotech 77:1053–1062

    Article  CAS  Google Scholar 

  • Knoshaug EP, Franden MA, Stambuk BU, Zhang M, Singh A (2009) Utilization and transport of l-arabinose by non-Saccharomyces yeasts. Cellulose 16:729–741

    Article  CAS  Google Scholar 

  • Kou S-C, Christensen MS, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol 103:671–678

  • Lehtonen JV, Still D, Rantanen V, Ekholm J, Björklund D, Iftikhar Z, Huhtala M, Repo S, Jussila A, Jaakkola J, Pentikäinen O, Nyrönen T, Salminen T, Gyllenberg M, Johnson MS (2004) Bodil: a molecular modeling environment for structure–function analysis and drug design. J Comput Aided Mol Des 18:401–419

    Article  CAS  PubMed  Google Scholar 

  • Lien OG (1959) Determination of gluconolactone, galactonolactone and their free acids by the hydroxamate method. Anal Chem 31:1363–1366

    Article  CAS  Google Scholar 

  • Liu H, Valdehuesa KG, Ramos KRM, Nisola GM, Lee W, Chung W-J (2014) l-Arabonate and d-galactonate production by expressing a versatile sugar dehydrogenase in metabolically engineered Escherichia coli. Bioresour Technol 159:455–9

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

  • Mathias AL, Rigo LU, Funayama S, Pedrosa FO (1989) l-Arabinose metabolism in Herbaspirillum seropedicae. J Bacteriol 171:5206–5209

    CAS  PubMed Central  PubMed  Google Scholar 

  • McMillan JD, Boynton BL (1994) Arbinose utilization by xylose-fermenting yeasts and fungi. Appl Biochem Biotechnol 45–46:569–84

    Article  PubMed  Google Scholar 

  • Nandini CD, Salimath V (2001) Carbohydrate composition of wheat, wheat bran, sorghum and bajra with good chapati/roti (Indian flat bread) making quality. Food Chem 73:197–203

    Article  CAS  Google Scholar 

  • Neuhaus D, Ismail IM, Chung C-W (1996) “FLIPSY”—A new solvent-suppression sequence for nonexchanging solutes offering improved integral accuracy relative to 1D NOESY. J Magn Res A 118:256–263

    Article  CAS  Google Scholar 

  • Niu W, Molefe MN, Frost JW (2003) Microbial synthesis of the energetic material precursor 1, 2, 4-butanetriol. J Am Chem Soc 125:12998–12999

    Article  CAS  PubMed  Google Scholar 

  • Novick NJ, Tyler ME (1982) l-Arabinose metabolism in Azospirillum brasiliense. J Bacteriol 119:336–338

    Google Scholar 

  • Nygård Y, Toivari MH, Penttilä M, Ruohonen L, Wiebe MG (2011) Bioconversion of d-xylose to Dd-xylonate with Kluyveromyces lactis. Metab Eng 13:383–391

    Article  PubMed  Google Scholar 

  • Pedrosa FO, Zancan GT (1974) l-Arabinose metabolism in Rhizobium japonicum. J Bacteriol 149:364–367

    Google Scholar 

  • Richard P, Verho R, Putkonen M, Londesborough J, Penttilä M (2003) Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res 3:185–189

    Article  CAS  PubMed  Google Scholar 

  • Ruohonen L, Aristidou A, Frey AD, Penttilä M, Kallio PT (2006) Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast Saccharomyces cerevisiae under low oxygen conditions. Enzym Microb Technol 39:6–14

    Article  CAS  Google Scholar 

  • Sakakibara Y, Saha BC, Taylor P (2009) Microbial production of xylitol from l-arabinose by metabolically engineered Escherichia coli. Biosci Bioeng 107:506–11

    Article  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Sanai, K and Tanaka, Y (2010) Preventive/remedy for urinary calculosis. United States Godo Shusei Co., Ltd. (Chuoku,JP). Patent 20100227923

  • Sanai K, Tanaka Y, Negishi S, Seri K, Sasaki H (2007) Composition for accelerating calcium absorption. Patent US2007/0293443 A1

  • Seiboth B, Metz B (2011) Fungal arabinan and l-arabinose metabolism. Appl Microbiol Biotechnol 89:1665–1673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman F, Fink G, Hicks JB (1983) Methods in yeast genetics. A laboratory manual. Cold Springs Harbor Laboratory, Cold Springs Harbor

  • Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U (2007) Genetic analysis of a novel pathway for d-xylose metabolism in Caulobacter crescentus. J Bacteriol 189:2181–2185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toivari MH, Ruohonen L, Richard P, Penttilä M, Wiebe MG (2010) Saccharomyces cerevisiae engineered to produce d-xylonate. Appl Microbiol Biotechnol 88:751–760

    Article  CAS  PubMed  Google Scholar 

  • Toivari MH, Nygård Y, Penttilä M, Ruohonen L, Wiebe MG (2012a) Microbial d-xylonate production. Appl Microbiol Biotechnol 96:1–8. doi:10.1007/s00253-012-4288-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toivari M, Nygård Y, Kumpula EP, Vehkomäki ML, Benčina M, Valkonen M, Maaheimo H, Andberg M, Koivula A, Ruohonen L, Penttilä M, Wiebe MG (2012b) Metabolic engineering of Saccharomyces cerevisiae for bioconversion of d-xylose to d-xylonate. Metab Eng 14:427–436

    Article  CAS  PubMed  Google Scholar 

  • Träff KL, Jönsson LJ, Hahn-Hägerdal B (2002) Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19:1233–1241

    Article  PubMed  Google Scholar 

  • Turkia H, Siren H, Pitkänen J-P, Wiebe M, Penttilä M (2010) Capillary electrophoresis for the monitoring of carboxylic acid production by Gluconobacter oxydans. J Chromatogr 1217:1537–1542

    Article  CAS  Google Scholar 

  • Ueberschär K-H, Blachnitzky E-O, Kurz G (1974) Reaction mechanism of d-galactose dehydrogenases from Pseudomonas saccharophila and Pseudomonas fluorescens. Eur J Biochem 48:389–405

    Article  PubMed  Google Scholar 

  • van Eunen K, Bouwman J, Daran-Lapujade P, Postmus J, Canelas AB, Mensonides FIC, Orij R, Tuzun I, Van Den Brink J, Smits GJ, Van Gulik WM, Brul S, Heijnen JJ, De Winde JH, Teixeira de Mattos MJ, Kettner C, Nielsen J, Westerhoff HV, Bakker BM (2010) Measuring enzyme activities under standardized in vivo-like conditions for systems biology. FEBS J 277:749–760

    Article  PubMed  Google Scholar 

  • Watanabe S, Kodaki T, Makino K (2006a) Cloning, expression, and characterization of bacterial l-arabinose 1-dehydrogenase involved in an alternative pathway of l-arabinose metabolism. J Biol Chem 281:2612–2623

  • Watanabe S, Shimada N, Tajima K, Kodaki T, Makino K (2006b) Identification and characterization of l-arabonate dehydratase, l-2-keto-3-deoxyarabonate dehydratase, and l-arabinolactonase involved in an alternative pathway of l-arabinose metabolism. Novel evolutionary insight into sugar metabolism. J Biol Chem 281:33521–33536

    Article  CAS  PubMed  Google Scholar 

  • Weimberg R, Doudoroff M (1955) The oxidation of l-arabinose by Pseudomonas saccharophila. J Biol Chem 217:607–624

    CAS  PubMed  Google Scholar 

  • Wiebe MG, Koivuranta K, Penttilä M, Ruohonen L (2012) Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol 12:26. doi:10.1186/1472-6750-12-26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong Y, Yao XT (1994) The Ley-Doudoroff pathway of galactose metabolism in Azotobacter vinelandii. Appl Environ Microbiol 60:2065–2068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Technical assistance of Tarja Laakso and CE analysis by Heidi Turkia is gratefully acknowledged. This study was financially supported by the Academy of Finland through the Centre of Excellence in White Biotechnology–Green Chemistry (grant 118573 for VTT) and the Pentoval project (grant 129174 for Merja Penttilä and grant 129175 for Olli T. Pentikäinen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Koivula.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aro-Kärkkäinen, N., Toivari, M., Maaheimo, H. et al. l-Arabinose/d-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of l-arabinose to l-arabonate with Saccharomyces cerevisiae . Appl Microbiol Biotechnol 98, 9653–9665 (2014). https://doi.org/10.1007/s00253-014-6039-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6039-2

Keywords

Navigation