Skip to main content
Log in

Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrogen is an important nutrient in alcoholic fermentation because its starvation affects both fermentation kinetics and the formation of yeast metabolites. In most alcoholic fermentations, yeasts have to ferment in nitrogen-starved conditions, which requires modifications of cell functions to maintain a high sugar flux and enable cell survival for long periods in stressful conditions. In this review, we present an overview of our current understanding of the responses of the wine yeast Saccharomyces cerevisiae to variations of nitrogen availability. Adaptation to nitrogen starvation involves changes in the activity of signaling pathways such as target of rapamycin (TOR) and nitrogen catabolite repression (NCR), which are important for the remodeling of gene expression and the establishment of stress responses. Upon starvation, protein degradation pathways involving autophagy and the proteasome play a major role in nitrogen recycling and the adjustment of cellular activity. Recent progress in the understanding of the role of these mechanisms should enable advances in fermentation management and the design of novel targets for the selection or improvement of yeast strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agenbach WA (1977) A study of must nitrogen content in relation to incomplete fermentations, yeast production and fermentation activity. In: Proceedings South African Society of Enology and Viticulture, Cape Town, South Africa. Stellenbosh, S. A, pp. 66-87

  • Albers A, Larsson C, Andlid T, Walsh MC, Gustafsson L (2007) Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae. Appl Environ Microbiol 73:4839–4848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Backhus LE, DeRisi J, Brown PO, Bisson LF (2001) Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Res 1:111–125

    Article  CAS  PubMed  Google Scholar 

  • Barbosa C, Falco V, Mendes-Faia A, Mendes-Ferreira A (2009) Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains. J Biosci Bioeng 108:99–104

    Article  CAS  PubMed  Google Scholar 

  • Bell SJ, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11:242–295

    Article  CAS  Google Scholar 

  • Beltran G, Novo M, Rozès N, Mas A, Guillamon JM (2004) Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentation. FEMS Yeast Res 4:625–632

    Article  CAS  PubMed  Google Scholar 

  • Beltran G, Esteve-Zarzoso B, Rozès N, Mas A, Guillamon JM (2005) Influence in the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agric Food Chem 53:996–1002

    Article  CAS  PubMed  Google Scholar 

  • Bely M, Sablayrolles JM, Barre P (1990a) Automatic control of assimilable nitrogen addition during alcoholic fermentation in enological conditions. J Ferm Bioeng 70:1–6

    Article  Google Scholar 

  • Bely M, Sablayrolles JM, Barre P (1990b) Description of alcoholic fermentation kinetics: its variability and significance. Am J Enol Vitic 40:319–324

    Google Scholar 

  • Bely M, Sablayrolles JM, Barre P (1990c) Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in enological conditions. J Ferm Bioeng 70:246–252

    Article  CAS  Google Scholar 

  • Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, Chan TF, Zheng XF (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275:35727–35733

    Article  CAS  PubMed  Google Scholar 

  • Beyer A, Hollunder J, Nasheuer HP, Wilhelm T (2004) Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol Cell Proteomics 3:1083–1092

    Article  CAS  PubMed  Google Scholar 

  • Bisson LF (1991) Influence of nitrogen on yeast and fermentation of grapes. Proceedings of the International Symposium on Nitrogen in Grapes and Wine. Am J Enol Vitic 42:78–89

    Google Scholar 

  • Blateyron L, Sablayrolles JM (2001) Stuck and slow fermentations in enology: statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate. J Biosci Bioeng 91:184–189

    Article  CAS  PubMed  Google Scholar 

  • Boer VM, de Winde JH, Pronk JT, Piper MDW (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274

    Article  CAS  PubMed  Google Scholar 

  • Breker M, Gymrek M, Schuldiner M (2013) A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 200:839–850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brice C, Sanchez I, Tesnière C, Blondin B (2014a) Assessing the mechanisms responsible for differences in nitrogen requirements between Saccharomyces cerevisiae wine yeasts in alcoholic fermentation. Appl Environ Microbiol 80:1330–1339

    Article  PubMed Central  PubMed  Google Scholar 

  • Brice C, Sanchez I, Bigey F, Legras JL, Blondin B (2014b) A QTL approach for deciphering the genetics bases of variability in nitrogen requirement of yeast. BMC Genomics 15:495

    Article  PubMed Central  PubMed  Google Scholar 

  • Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105

    Article  PubMed Central  PubMed  Google Scholar 

  • Butzke CE (1998) Study of yeast assimilable N status in musts from California, Oregon and Washington. Am J Enol Vitic 49:220–224

    CAS  Google Scholar 

  • Carrasco P, Perez-Ortin JE, delOlmo M (2003) Arginase activity is a useful marker of nitrogen limitation during alcoholic fermentations. Syst Appl Microbiol 26:471–479

    Article  CAS  PubMed  Google Scholar 

  • Carrau FM, Neirotti E, Gioia O (1993) Stuck wine fermentations: effect of killer/sensitive yeast interactions. J Ferm Bioeng 76:67–69

    Article  CAS  Google Scholar 

  • Carrau FM, Medina K, Farina L, Boido E, Henschke PA, Dellacassa E (2008) Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res 8:1196–1207

    Article  CAS  PubMed  Google Scholar 

  • Cebollero E, Gonzales R (2006) Induction of autophagy by second-fermentation yeasts during elaboration of sparkling wines. Appl Environ Microbiol 72:4121–4127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiva R, Baiges I, Mas A, Guillamon JM (2009) The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation. J Appl Microbiol 107:235–244

    Article  CAS  PubMed  Google Scholar 

  • Contreras A, García V, Salinas F, Urzúa U, Ganga MA, Martínez C (2012) Identification of genes related to nitrogen uptake in wine strains of Saccharomyces cerevisiae. World J Microbiol Biotechnol 28:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Cramer AC, Vlassides S, Block DE (2002) Kinetic model for nitrogen-limited wine fermentations. Biotechnol Bioeng 77:49–60

    Article  CAS  PubMed  Google Scholar 

  • Crépin L, Nidelet T, Sanchez I, Dequin C, Camarasa C (2012) Sequential use of nitrogen compounds by Saccharomyces cerevisiae during wine fermentation: a model based on kinetic and regulation characteristics of nitrogen permeases. Appl Environ Microbiol 78:8102–8111

    Article  PubMed Central  PubMed  Google Scholar 

  • Cutler NS, Pan X, Heitman J, Cardenas ME (2001) The TOR signal transduction cascade controls cellular differentiation in response to nutrient. Mol Biol Cell 12:4103–4113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubois C, Manginot C, Roustan JL, Sablayrolles JM, Barre P (1996) Effect of variety, year, and grape maturity on the kinetics of alcoholic fermentation. Am J Enol Vitic 47:363–368

    Google Scholar 

  • Dupré S, Volland C, Haguenauer-Tsapis R (2001) Membrane transport: ubiquitylation in endosomal sorting. Curr Biol 11:R932–R934

    Article  PubMed  Google Scholar 

  • Finley D, Ulrich HD, Sommer T, Kaiser P (2012) The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192:319–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Bolstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grundmann O, Mösch HU, Braus GH (2001) Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae. J Biol Chem 276:25661–25671

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez A, Chiva R, Sancho M, Beltran G, Arroyo-López FN, Guillamon JM (2012) Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must. Food Microbiol 31:25–32

    Article  PubMed  Google Scholar 

  • Gutiérrez A, Beltran G, Warringer J, Guillamon JM (2013) Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains. PLoS ONE 8:e67166

    Article  PubMed Central  PubMed  Google Scholar 

  • Henschke P, Jiranek V (1993) Yeasts metabolism of nitrogen compounds. In: Fleet GH (ed) Wine. Microbiology and biotechnology. Harwood Academic, Chur pp 77-164

  • Herraiz T, Ough CS (1993) Formation of ethyl esters of amino acids by yeasts during the alcoholic fermentation of grape juice. Am J Enol Vitic 44:41–48

    CAS  Google Scholar 

  • Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    Article  CAS  PubMed  Google Scholar 

  • Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12:35–73

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Kawamata T, Horie T, Tsugawa H, Nakayama Y, Ohsumi Y, Fukusaki E (2015) Bulk RNA degradation by nitrogen starvation‐induced autophagy in yeast. EMBO J34:154–168

    Article  Google Scholar 

  • Jiranek V, Langridge P, Henschke PA (1991) Yeast nitrogen demand: selection criterion for wine yeasts for fermenting low nitrogen musts. In: Ranz JM (ed) Proceedings of the international symposium on nitrogen in grapes and wine, pp 266-269

  • Jiranek V, Langridge P, Henschke PA (1995) Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium. Am J Enol Vitic 46:75–83

    CAS  Google Scholar 

  • Julien A, Roustan JL, Dulau L, Sablayrolles JM (2000) Comparison of nitrogen and oxygen demands of enological yeasts: technological consequences. Am J Enol Vitic 51:215–222

    CAS  Google Scholar 

  • Kelly SP, Bedwell (2015) Both the autophagy and proteasomal pathways facilitate the Ubp3p-dependent depletion of a subset of translation and RNA turnover factors during nitrogen starvation in Saccharomyces cerevisiae. RNA 21:1–13

    Article  Google Scholar 

  • Kraft C, Deplazes A, Sohrmann M, Peter M (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3/Bre5p ubiquitin protease. Nat Cell Biol 10:602–610

    Article  CAS  PubMed  Google Scholar 

  • Kraft C, Peter M, Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12:836–841

    Article  CAS  PubMed  Google Scholar 

  • Krampe S, Boles E (2002) Starvation-induced degradation of yeast hexose transporter Hxt7p is dependent on endocytosis, autophagy and the terminal sequences of the permease. FEBS Lett 513:193–196

    Article  CAS  PubMed  Google Scholar 

  • Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

    Article  CAS  PubMed  Google Scholar 

  • Maisonnave P, Sanchez I, Moine V, Dequin S, Galeote V (2013) Stuck fermentation: development of a synthetic stuck wine and study of a restart procedure. Int J Food Microbiol 163:239–247

    Article  CAS  PubMed  Google Scholar 

  • Malherbe S (2003) Modélisation de la fermentation alcoolique en conditions oenologiques. Sciences et procédés biologiques et industriels. Thesis. Montpellier II University

  • Manginot C, Sablayrolles JM, Roustan JL, Barre P (1997) Use of constant rate alcoholic fermentations to compare the effectiveness of different nitrogen sources added during the stationary phase. Enzym Microb Technol 20:373–380

    Article  CAS  Google Scholar 

  • Manginot C, Roustan JL, Sablayrolles JM (1998) Nitrogen demand of different yeast strains during alcoholic fermentation. Importance of the stationary phase. Enzym Microb Technol 23:511–517

    Article  CAS  Google Scholar 

  • Marks VD, van der Merwe GK, van Vuuren HJJ (2003) Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res 3:269–287

    Article  CAS  PubMed  Google Scholar 

  • Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserma WW, Bryan J, van Vuuren JJ (2008) Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8:35–52

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Moreno R, Morales P, Gonzalez R, Mas A, Beltran G (2012) Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Res 12:477–485

    Article  PubMed  Google Scholar 

  • Martínez-Moreno R, Quirós M, Morales P, Gonzalez R (2014) New insights into the advantages of ammonium as a winemaking nutrient. Int J Food Microbiol 177:128–135

    Article  PubMed  Google Scholar 

  • Medina K, Carrau FM, Gioia O, Bracesco N (1997) Nitrogen availability of grape juice limits killer yeast growth and fermentation activity during mixed-culture fermentation with sensitive commercial yeast strains. Appl Environ Microbiol 63:2821–2825

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mendes-Ferreira A, Mendes-Faia A, Leão C (2004) Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry. J Appl Microbiol 97:540–545

    Article  CAS  PubMed  Google Scholar 

  • Mendes-Ferreira A, del Olmo M, Garcia-Matinez J, Jimenez-Marti E, Mendes-Faia A, Perez-Ortin JE, Leão C (2007) Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Appl Environ Microbiol 73:3049–3060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mendes-Ferreira A, Barbosa C, Falco V, Leão C, Mendes-Faia A (2009) The production of hydrogen sulphide and other aroma compounds by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations. J Ind Microbiol Biotechnol 36:571–583

    Article  CAS  PubMed  Google Scholar 

  • Monteiro F, Bisson LF (1992) Nitrogen supplementation of grape juice. I. Effect on amino acid utilization during fermentation. Am J Enol Vitic 43:1–10

    Google Scholar 

  • Narayanaswamy R, Levy M, Tsechansky M, Stovall GW, O’Connell JD, Mirrielees J, Ellington AD, Marcotte EM (2009) Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci USA 106:10147–10152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicolini G, Larcher R, Versini G (2004) Status of yeast assimilable nitrogen in Italian grape musts and effects of variety, ripening and vintage. Vitis 43:89–96

    CAS  Google Scholar 

  • Nomura W, Maeta K, Kita K, Izawa S, Inoue Y (2010) Methylglyoxal activates Gcn2 to phosphorylate eIF2 α independently of the TOR pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86:1887–1894

    Article  CAS  PubMed  Google Scholar 

  • Novo MT, Beltran G, Rozès N, Guillamon JM, Mas A (2005) Effect of nitrogen limitation and surplus upon trehalose metabolism in wine yeast. Appl Microbiol Biotechnol 66:560–566

    Article  CAS  PubMed  Google Scholar 

  • Nykanen L (1986) Formation and occurrence of flavor compounds in wine and distilled alcoholic beverage. Am J Enol Vitic 37:84–96

    CAS  Google Scholar 

  • Onodera J, Oshimi Y (2005) Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280:31582–31586

    Article  CAS  PubMed  Google Scholar 

  • Orlova M, Kanter E, Krakovich D, Kuchin S (2006) Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot Cell 5:1831–1837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perez M, Luyten K, Michel R, Riou C, Blondin B (2005) Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high-affinity Hxt transporters are expressed. FEMS Yeast Res 5:351–361

    Article  CAS  PubMed  Google Scholar 

  • Piggott N, Cook MA, Tyers M, Measday V (2011) Genome-wide fitness profiles reveal a requirement for autophagy during yeast fermentation. G3 5:353-367

  • Rohde J, Heitman J, Cardenas ME (2001) The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276:9583–9586

    Article  CAS  PubMed  Google Scholar 

  • Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20:1369–1385

    Article  CAS  PubMed  Google Scholar 

  • Rossignol T (2004) Analyse de l’expression du génome des levures oenologiques en fermentation alcoolique par des approches post-génomiques. Thesis, Montpellier II University, Montpellier

  • Rossignol T, Kobi D, Jacquet-Gutfreund L, Blondin B (2009) The proteome of a wine yeast strain during fermentation, correlation with the transcriptome. J Appl Microbiol 107:47–55

    Article  CAS  PubMed  Google Scholar 

  • Saint-Prix F, Bönquist L, Dequin S (2004) Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiol 150:2209–2220

    Article  CAS  Google Scholar 

  • Salmon JM (1989) Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl Environ Microbiol 55:953–958

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salmon JM, Barre P (1998) Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl Environ Microbiol 64:3831–3837

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shirra MK, McCartney RR, Zhang C, Shokat KM, Schmidt MC, Arndt KM (2008) A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J Biol Chem 283:35889–35898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snowdon C, van der Merwe G (2012) Regulation of Hxt3 and Hxt7 turnover converges on the Vid30 complex and requires inactivation of the Ras/cAMP/PKA pathway in Saccharomyces cerevisiae. PLoS ONE 7:e50458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK (2009) The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc Natl Acad Sci U S A 106:17049–17054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swinnen E, Wanke V, Roosen J, Smets B, Dubouloz F, Pedruzzi I, Cameroni E, De Virgilio C, Winderickx J (2006) Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div 1:3

    Article  PubMed Central  PubMed  Google Scholar 

  • TerSchure EG, Van Riel NAV, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    Article  CAS  Google Scholar 

  • Tesnière C, Delobel P, Pradal M, Blondin B (2013) Impact of nutrient imbalance on wine alcoholic fermentations: nitrogen excess enhances yeast cell death in lipid-limited must. PLoS ONE 8:e61645

    Article  PubMed Central  PubMed  Google Scholar 

  • Trabalzini L, Paffetti A, Scaloni A, Talamo F, Ferro E, Coratza G, Bovalini L, Lusini P, Martelli P, Santucci A (2003) Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Biochem J 370:35–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674

    Article  CAS  PubMed  Google Scholar 

  • Uttenweiler A, Mayer A (2008) Microautophagy in the yeast Saccharomyces cerevisiae. Methods Mol Biol 445:245–259

    Article  CAS  PubMed  Google Scholar 

  • Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 6:3392–3400

    Article  Google Scholar 

  • Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Cell Physiol 77:145–157

    CAS  Google Scholar 

  • Vinod PK, Sengupta N, Bhat PJ, Venkatesh KV (2008) Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11. PLoS ONE 3:e1663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V (2014) Genome-wide identification of the fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 15:552

    Article  PubMed Central  PubMed  Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  CAS  PubMed  Google Scholar 

  • Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Vaga S, Chumnanpuen P, Kumar R, Vemuri GN, Aebersold R, Nielsen J (2011) Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol 7:545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao X, Zou H, Fu J, Chen J, Zhou J, Du G (2013) Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae. Yeast 30:437–447

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Tesnière.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesnière, C., Brice, C. & Blondin, B. Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl Microbiol Biotechnol 99, 7025–7034 (2015). https://doi.org/10.1007/s00253-015-6810-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6810-z

Keywords

Navigation