Skip to main content
Log in

Biosynthesis and function of bacterial dialkylresorcinol compounds

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This review summarizes the research of bacterially produced dialkylresorcinols (DARs). We will give an overview about the DAR-related research during the last 40 years. Furthermore, a brief introduction into the class of ketosynthases (KS) and examples of these enzymes which show a deviation to the usual catalytic activity is given. One of these is DarB, which is involved in the DAR biosynthesis. The clustering and distribution of the DAR biosynthesis gene clusters (BGC), that has been identified in more than 100 genomes from taxonomically distinct bacteria, is discussed regarding the structures of the biosynthetic products from these BGCs. Finally, the biological activities of described DARs are summarized and possible methods for the detection and structure elucidation of DARs are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achenbach H, Kohl W (1979) Untersuchungen an Stoffwechselprodukten von Mikroorganismen, XVIII. Zur Konstitutionsaufklärung der Pigmente vom Flexirubin-Typ — Massenspektrometrische Untersuchungen. Chem Ber 112(1):209–217. doi:10.1002/cber.19791120119

    Article  CAS  Google Scholar 

  • Achenbach H, Böttger A, Kohl W, Fautz E, Reichenbach H (1979) Untersuchungen zur biogenese des flexirubins—herkunft des benzolringes a und der aromatischen C-methylgruppen. Phytochemistry 18(6):961–963. doi:10.1016/S0031-9422(00) 91458-4

  • Achenbach H, Kohl W, Reichenbach H (1976) Untersuchungen an Stoffwechselprodukten von Mikroorganismen, XI: Flexirubin, ein neuartiges Pigment aus Flexibacter elegans. Chem Ber 109:2490–2502. doi:10.1002/cber.19761090717

    Article  CAS  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20(1):79–110. doi:10.1039/b100917f

    Article  CAS  PubMed  Google Scholar 

  • Beresovsky D, Hadas O, Livne A, Sukenik A, Kaplan A, Carmeli S (2006) Toxins and biologically active secondary metabolites of Microcystis sp. isolated from Lake Kinneret. Isr J Chem 46(1):79–87

    Article  CAS  Google Scholar 

  • Bissonnette R, Poulin Y, Zhou Y, Tan J, Hong HC, Webster J, Ip W, Tang L, Lyle M (2012) Efficacy and safety of topical WBI-1001 in patients with mild to severe atopic dermatitis: results from a 12-week, multicentre, randomized, placebo-controlled double-blind trial. Brit J Dermatol 166(4):853–860

    Article  CAS  Google Scholar 

  • Brachmann AO, Brameyer S, Kresovic D, Hitkova I, Kopp Y, Manske C, Schubert K, Bode HB, Heermann R (2013) Pyrones as bacterial signaling molecules. Nat Chem Biol 9(9):573–U73

    Article  CAS  PubMed  Google Scholar 

  • Brameyer S, Kresovic D, Bode HB, Heermann R (2015) Dialkylresorcinols as bacterial signaling molecules. Proc Natl Acad Sci U S A 112(2):572–577. doi:10.1073/pnas.1417685112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bretschneider T, Zocher G, Unger M, Scherlach K, Stehle T, Hertweck C (2012) A ketosynthase homolog uses malonyl units to form esters in cervimycin biosynthesis. Nat Chem Biol 8(2):154–161. doi:10.1038/nchembio.746

    Article  CAS  Google Scholar 

  • Buscató E, Büttner D, Brüggerhoff A, Klingler FM, Weber J, Scholz B, Živković A, Marschalek R, Stark H, Steinhilber D, Bode HB, Proschak E (2013) From a multipotent stilbene to soluble epoxide hydrolase inhibitors with antiproliferative properties. ChemMedChem 8:919–923. doi:10.1002/cmdc.201300057

    Article  PubMed  Google Scholar 

  • Calderón CE, Pérez-García A, Vicente A de, Cazorla FM (2013) The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol. Mol Plant-Microbe Interact 26(5):554–565. doi: 10.1094/MPMI-01-13-0012-R

  • Calderón CE, de Vicente A, Cazorla FM (2014) Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. FEMS Microbiol Ecol 89(1):20–31. doi:10.1111/1574-6941.12319

    Article  PubMed  Google Scholar 

  • Cazorla FM, Duckett SB, Bergström ET, Noreen S, Odijk R, Lugtenberg BJJ, Thomas-Oates JE, Bloemberg GV (2006) Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant-Microbe Interact 19(4):418–428. doi:10.1094/MPMI-19-0418

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Li J, Liu W, Webster J (2004) Novel bioactive diphenyl ethene compounds and their therapeutic applications. http://www.google.com/patents/WO2004031117A1?cl=en

  • Chen G, Webster JM, Li J, Hu K, Zhu J, Liu W (2011) Anti-inflammatory and psoriasis treatment and protein kinase inhibition by hydroxy stilbenes and novel stilbene derivatives and analogues. http://www.google.com.ar/patents/US7868047

  • Franke S, Ibarra F, Schulz CM, Twele R, Poldy J, Barrow RA, Peakall R, Schiestl FP, Francke W (2009) The discovery of 2,5-dialkylcyclohexan-1,3-diones as a new class of natural products. Proc Natl Acad Sci U S A 106(22):8877–8882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuchs SW, Bozhüyük KAJ, Kresovic D, Grundmann F, Dill V, Brachmann AO, Waterfield NR, Bode HB (2013) Formation of 1,3-cyclohexanediones and resorcinols catalyzed by a widely occurring ketosynthase. Angew Chem, Int Ed Engl 52(15):4108–4112

    Article  CAS  Google Scholar 

  • Goblirsch BR, Frias JA, Wackett LP, Wilmot CM (2012) Crystal structures of Xanthomonas campestris OleA reveal features that promote head-to-head condensation of two long-chain fatty acids. Biochemistry 51(20):4138–4146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haapalainen AM, Meriläinen G, Wierenga RK (2006) The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem Sci 31(1):64–71. doi:10.1016/j.tibs.2005.11.011

    Article  CAS  PubMed  Google Scholar 

  • Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem, Int Ed Engl 48(26):4688–4716. doi:10.1002/anie.200806121

    Article  CAS  Google Scholar 

  • Hu KJ, Li JX, Li B, Webster JM, Chen GH (2006) A novel antimicrobial epoxide isolated from larval Galleria mellonella infected by the nematode symbiont, Photorhabdus luminescens (Enterobacteriaceae). Bioorg Med Chem 14(13):4677–4681

    Article  CAS  PubMed  Google Scholar 

  • Imai S, Fujioka K, Furihata K, Fudo R, Yamanaka S, Seto H (1993) Studies on cell growth stimulating substances of low molecular weight. Part 3. Resorcinin, a mammalian cell growth stimulating substance produced by Cytophaga johnsonae. J Antibiot 46(8):1319–1322. doi:10.7164/antibiotics.46.1319

    Article  CAS  PubMed  Google Scholar 

  • Joyce SA, Brachmann AO, Glazer I, Lango L, Schwär G, Clarke DJ, Bode HB (2008) Bacterial biosynthesis of a multipotent stilbene. Angew Chem, Int Ed Engl 47(10):1942–1945

    Article  CAS  Google Scholar 

  • Kanda N, Ishizaki N, Inoue N, Oshima M, Handa A, Kitahara T (1975) DB-2073, a new alkylresorcinol antibiotic. I. Taxonomy, isolation and characterization. J Antibiot 28(12):935–942

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Shindo K, Kawai H, Matsuoka M, Mochizuki J (1993) Studies on free radical scavenging substances from microorganisms. III. Isolation and structural elucidation of a novel free radical scavenger, resorstatin. J Antibiot 46(6):1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Kitahara T, Kanda N (1975) DB-2073, a new alkylresorcinol antibiotic. II. The chemical structure of DB-2073. J Antibiot 28(12):943–946

    Article  CAS  PubMed  Google Scholar 

  • Kronenwerth M, Brachmann AO, Kaiser M, Bode HB (2014a) Bioactive derivatives of isopropylstilbene from mutasynthesis and chemical synthesis. ChemBioChem 15(18):2689–2691

    Article  CAS  PubMed  Google Scholar 

  • Kronenwerth M, Dauth C, Kaiser M, Pemberton I, Bode HB (2014b) Facile synthesis of cyclohexanediones and dialkylresorcinols—bioactive natural products from entomopathogenic bacteria. Eur J Org Chem 36:8026–8028

    Article  Google Scholar 

  • Kumar SN, Siji JV, Rajasekharan KN, Nambisan B, Mohandas C (2012) Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett Appl Microbiol 54(5):410–417. doi:10.1111/j.1472-765X.2012.03223.x

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Smith WC, Scharon AJ, Hwang SH, Kurth MJ, Shen B (2002) C-O bond formation by polyketide synthases. Science 297(5585):1327–1330. doi:10.1126/science.1073175

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen G, Wu H, Webster JM (1995) Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl Environ Microbiol 61(12):4329–4333

    PubMed Central  CAS  PubMed  Google Scholar 

  • McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng Y, Stein JL (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75(21):6864–6875. doi:10.1128/AEM.01495-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyanaga A, Funa N, Awakawa T, Horinouchi S (2008) Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis. Proc Natl Acad Sci U S A 105(3):871–876. doi:10.1073/pnas.0709819105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nowak-Thompson B, Hammer PE, Hill DS, Stafford J, Torkewitz N, Gaffney TD, Lam ST, Molnar I, Ligon JM (2003) 2,5-Dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: novel head-to-head condensation of two fatty acid-derived precursors. J Bacteriol 185(3):860–869. doi:10.1128/JB.185.3.860-869.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park HB, Crawford JM (2015) Lumiquinone A, an α-aminomalonate-derived aminobenzoquinone from Photorhabdus luminescens. J Nat Prod. Epub ahead of print. doi:10.1021/np500974f

  • Pohanka A, Levenfors J, Broberg A (2006) Antimicrobial dialkylresorcinols from Pseudomonas sp. Ki19. J Nat Prod 69(4):654–657. doi:10.1021/np0600595

    Article  CAS  PubMed  Google Scholar 

  • Proschak A, Zhou Q, Schöner T, Thanwisai A, Kresovic D, Dowling A, ffrench–constant R, Proschak E, Bode HB (2014) Biosynthesis of the insecticidal xenocyloins in Xenorhabdus bovienii. Chembiochem 15(3):369–372. doi:10.1002/cbic.201300694

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva S, Musayev FN, Alhamadsheh MM, Scarsdale J, Neel, Wright H, Tonie, Reynolds KA (2008) Separate entrance and exit portals for ligand traffic in Mycobacterium tuberculosis FabH. Chem Biol 15(4):402–412. doi:10.1016/j.chembiol.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  • Sankawa U, Shimada H, Yamasaki K (1981) Biosynthesis of 2-hexyl-5-propylresorcinol: biosynthetic incorporation of deuterium from (2-13C,2-2H3)-acetate. Chem Pharm Bull 29(12):3601–3605. doi:10.1248/cpb.29.3601

    Article  CAS  Google Scholar 

  • Satou R, Miyanaga A, Ozawa H, Funa N, Katsuyama Y, Miyazono K, Tanokura M, Ohnishi Y, Horinouchi S (2013) Structural basis for cyclization specificity of two azotobacter type III polyketide synthases: a single amino acid substitution reverses their cyclization specificity. J Biol Chem 288(47):34,146–34,157. doi:10.1074/jbc.M113.487272

    Article  CAS  Google Scholar 

  • Schöner TA, Fuchs SW, Reinhold-Hurek B, Bode HB (2014a) Identification and biosynthesis of a novel xanthomonadin-dialkylresorcinol-hybrid from Azoarcus sp. BH72. PLoS One 9(3):e90922. doi:10.1371/journal.pone.0090922

    Article  PubMed Central  PubMed  Google Scholar 

  • Schöner TA, Fuchs SW, Schönau C, Bode HB (2014b) Initiation of the flexirubin biosynthesis in Chitinophaga pinensis. Microb Biotechnol 7(3):232–241. doi:10.1111/1751-7915.12110

    Article  PubMed Central  PubMed  Google Scholar 

  • Stodola FH, Weisleder D, Vesonder RF (1973) A new dialkylresorcinol from Stemphylium majusculum. Phytochemistry 12(7):1797–1798

    Article  CAS  Google Scholar 

Download references

Ethical statement

This work was supported by an ERC starting grant to HBB under grant agreement number 311477 and the LOEWE priority program SynChemBio.

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge B. Bode.

Additional information

Tim A. Schöner and Darko Kresovic contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schöner, T.A., Kresovic, D. & Bode, H.B. Biosynthesis and function of bacterial dialkylresorcinol compounds. Appl Microbiol Biotechnol 99, 8323–8328 (2015). https://doi.org/10.1007/s00253-015-6905-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6905-6

Keywords

Navigation