Skip to main content

Advertisement

Log in

Copper and cerium-regulated gene expression in Methylosinus trichosporium OB3b

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In aerobic methanotrophs, copper and cerium control the expression and activity of different forms of methane monooxygenase and methanol dehydrogenase, respectively. To exploit methanotrophy for the valorization of methane, it is crucial to determine if these metals exert more global control on gene expression in methanotrophs. Using RNA-Seq analysis we compared the transcriptome of Methylosinus trichosporium OB3b grown in the presence of varying amounts of copper and cerium. When copper was added in the absence of cerium, expression of genes encoding for both soluble and particulate methane monooxygenases varied as expected. Genes encoding for copper uptake, storage, and efflux also increased, indicating that methanotrophs must carefully control copper homeostasis. When cerium was added in the absence of copper, expression of genes encoding for alternative methanol dehydrogenases varied as expected, but few other genes were found to have differential expression. When cerium concentrations were varied in the presence of copper, few genes were found to be either up- or downregulated, indicating that copper over rules any regulation by cerium. When copper was increased in the presence of cerium, however, many genes were upregulated, most notably multiple steps of the central methane oxidation pathway, the serine cycle, and the ethylmalonyl-CoA pathway. Many genes were also downregulated, including those encoding for nitrogenase and hydrogenase. Collectively, these data suggest that copper plays a larger role in regulating gene expression in methanotrophs, but that significant changes occur when both copper and cerium are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:1

    Article  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 1 August, 2016

  • Anthony CP, Williams P (2003) The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 1647:18–23

    Article  CAS  PubMed  Google Scholar 

  • Baichoo N, Helmann JD (2002) Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826–5832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baichoo N, Wang T, Ye R, Helmann JD (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45:1613–1629

    Article  CAS  PubMed  Google Scholar 

  • Braymer JJ, Giedroc DP (2014) Recent developments in copper and zinc homeostasis in bacterial pathogens. Curr Opin Chem Biol 19:59–66

    Article  CAS  PubMed  Google Scholar 

  • Choi DW, Kunz RC, Boyd ES, Semrau JD, Antholine WE, Han JI, Zahn JA, Boyd JM, Arlene M, DiSpirito AA (2003) The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH:quinone oxidoreductase complex from Methylococcus capsulatus Bath. J Bacteriol 185:5755–5764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu F, Lidstrom ME (2016) XoxF acts as the predominant methanol dehydrogenase in the type I methanotroph Methylomicrobium buryatense. J Bacteriol 198:1317–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiSpirito AA, Zahn JA, Graham DW, Kim HJ, Larive CK, Derrick TS, Cox CD, Taylor A (1998) Copper-binding compounds from Methylosinus trichosporium OB3b. J Bacteriol 180:3606–3613

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S (2016) Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev 80:387–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Farhan Ul Haque M, Kalidass B, Bandow N, Turpin EA, DiSpirito AA, Semrau JD (2015a) Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b. Appl Environ Microbiol 81:7546–7552

    Article  PubMed  PubMed Central  Google Scholar 

  • Farhan Ul Haque M, Kalidass B, Vorobev A, Baral BS, DiSpirito AA, Semrau JD (2015b) Methanobactin from Methylocystis strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl Environ Microbiol 81:2466–2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microbial Physiol 40:1–80

    Article  CAS  Google Scholar 

  • Gu W, Farhan Ul Haque M, DiSpirito AA, Semrau JD (2016) Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 363:1–6

    Article  Google Scholar 

  • Hanczár T, Csáki R, Bodrossy L, Murrell JC, Kovács KL (2002) Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism. Arch Microbiol 177:167–172

    Article  PubMed  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T, Kawai K (2011) Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans. J Biosci Bioeng 111:547–549

    Article  CAS  PubMed  Google Scholar 

  • Joshi NA, Fass JN (2011) Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. https://github.com/najoshi/sickle. Accessed 1 August 2016

  • Kalidass B, Farhan Ul Haque M, Baral BS, DiSpirito AA, Semrau JD (2015) Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper. Appl Environ Microbiol 81:1024–1031

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Engin 29:142–152

    Article  CAS  Google Scholar 

  • Kawamura S, O’Neil JG, Wilkinson JF (1983) Hydrogen production by methylotrophs under anaerobic conditions. J Ferment Technol 61:151–156

    CAS  Google Scholar 

  • Keltjens JT, Pol A, Reimann J, Op den Camp HJM (2014) PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 98:6163–6183

    Article  CAS  PubMed  Google Scholar 

  • Khmelenina VN, Rozova ON, But SY, Mustakhimov II, Reshetnikov AS, Beschastnyl AP, Trotsenko YA (2015) Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects. Appl Biochem Microbiol 51:150–158

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law CW, Chen Y, Shi W, Smyth GK (2014) Voom: precision weights unlock linear model analysis tools for RNA-Seq read counts. Genome Biol 15:1

    Article  Google Scholar 

  • Le Brun NE (2014) Copper in prokaryotes. In: Mert J, Wedd A (eds) RSC Metallobiology Series No. 2. Binding, transport and storage of metal ions in biological cells. Royal Society of Chemistry, London, pp 461–499

    Chapter  Google Scholar 

  • Lee SW, Keeney DR, Lim DH, DiSpirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? Appl Environ Microbiol 72:7503–7509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1760

    Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) 1000 genome project data processing subgroup. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2079

    Google Scholar 

  • Matsen J, Yang S, Stein LY, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front Microbiol 4:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell JC, Dalton H (1983) Nitrogen fixation in obligate methanotrophs. J Gen Microbiol 129:3481–3496

    CAS  Google Scholar 

  • Nakagawa T, Mitsui R, Tutani A, Sasa K, Tashiro S, Iwama T, Hayakawa T, Kawai K (2012) A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLoS One 7:e50480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen AK, Gerdes K, Degn H, Murrell JC (1996) Regulation of bacterial methane oxidation: transcription of the soluble methane monooxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions. Microbiology 142:1289–1296

    Article  CAS  PubMed  Google Scholar 

  • Nielsen AK, Gerdes K, Murrell JC (1997) Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Molec Microbiol 25:399–409

    Article  CAS  Google Scholar 

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MS, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Reports 1:293–306

    Article  Google Scholar 

  • Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264

    Article  CAS  PubMed  Google Scholar 

  • Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM (2013) Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection, and the relative importance of the different metal transport systems for virulence. Front Cell Infection Microbiol 3:90

    Article  Google Scholar 

  • Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Christen P, Kiefer P, Voholt JA (2010) Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology 156:2575–2586

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J, Bergman BH, Freemeier BC, Baral BS, Bandow NL, Vorobev A, Haft DH (2013) Methanobactin and MmoD work in concert to act as the ‘copper-switch’ in methanotrophs. Environ Microbiol 15:3077–3086

    CAS  PubMed  Google Scholar 

  • Skovran E, Palmer AD, Rountree AM, Good NM, Lidstrom ME (2011) XoxF is required for expression of methanol dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 193:6032–6038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley SH, Prior SD, Leak DJ, Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of the methane monooxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol Lett 5:487–492

    Article  CAS  Google Scholar 

  • Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4008

    Article  CAS  PubMed  Google Scholar 

  • Toyama H, Inagaki H, Matsushita K, Anthony C, Adachi O (2003) The role of the MxaD protein in the respiratory chain of Methylobacterium extorquens during growth on methanol. Biochim Biophys Acta 1647:372–375

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  PubMed  Google Scholar 

  • Vekeman B, Speth D, Wille J, Cremers G, De Vos P, Op den Camp HJM, Heylen K (2016) Genome characteristics of two novel type I methanotrophs enriched from North Sea sediments containing exclusively a lanthanide-dependent XoxF5-type methanol dehydrogenase. Microb Ecol 72:503–509

    Article  CAS  PubMed  Google Scholar 

  • Vita N, Plataski S, Baslé A, Allen SJ, Paterson NG, Crombie AT, Murrell JC, Waldron KJ, Dennison C (2016) A four-helix bundle stores copper for methane oxidation. Nature 525:140–143

    Article  Google Scholar 

  • Vu HN, Subuyi GA, Vijayakumar S, Good NM, Martinez-Gomez NC, Skovran E (2016) Lanthanide-dependent regulation of methanol oxidation systems in Methylobacterium extorquens AM1 and their contribution to methanol growth. J Bacteriol 198:1250–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  CAS  PubMed  Google Scholar 

  • Wehrmann M, Billard P, Martin-Meriadec A, Zegeye A, Klebensberger J (2017) Functional role of lanthanides in enzymatic activity and transcriptional regulation of pyrroloquinolone quinone-dependent alcohol dehydrogenases in Pseudomonas putida KT2440. MBio 8:E00570–E00517

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology 61:205–218

    CAS  Google Scholar 

  • Williams PA, Coates L, Mohammed F, Gill R, Erskine PT, Coker A, Wood SP, Anthony C, Cooper JB (2005) The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Crystal Sect D: Biol Crystal 61:75–79

    Article  CAS  Google Scholar 

  • Wu ML, Wessels HJ, Pol A, Op den Camp HJM, Jetten MSM, van Niftrik L, Keltjens JT (2015) XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 81:1442–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon S, Carey JN, Semrau JD (2009) Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl Microbiol Biotechnol 83:949–956

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Office of Science (Biological and Environmental Research), US Department of Energy, Grant No. DE-SC0006630. The funder had no role in the study design, data collection, and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy D. Semrau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 999 kb)

ESM 2

(XLSX 1404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, W., Semrau, J.D. Copper and cerium-regulated gene expression in Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol 101, 8499–8516 (2017). https://doi.org/10.1007/s00253-017-8572-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8572-2

Keywords

Navigation