Skip to main content

Advertisement

Log in

Camptothecin analogs with enhanced activity against human breast cancer cells. II. Impact of the tumor pH gradient

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Human breast tumors often exist in an acidic and hypoxic microenvironment, which can promote resistance to radiation and chemotherapies. A tumor-selective pH gradient arises in these tumors which favors uptake and retention of drugs like camptothecin that are weak acids. We evaluated the effect of alkyl substitutions at the 7 position in seven CPTs with varying groups at the 10 position on modulation by acidic extracellular pH in three human breast cancer cell lines. Growth inhibition was assessed by propidium iodide staining of nucleic acids in human breast cancer cells cultured at either extracellular pH 6.8 or 7.4 that were (1) hormone-sensitive (MCF-7/wt), (2) hormone insensitive (MDA-MB-231), or (3) alkylator-resistant (MCF-7/4-hc). Over 10-fold pH modulation was observed in 7-halomethyl analogs of methylenedioxy-CPT and in 7-alkyl analogs of 10-amino-CPT. Of 39 analogs tested, the overall pattern of activity across breast tumor cell lines was similar with some notable exceptions. For example, 7-propyl-10-amino-CPT was modulated 16- to 20-fold by acidic extracellular pH in the MCF-7 cell lines, but only 6-fold in MDA-MB-231 cells. One mechanism that can contribute to pH modulation is enhanced cellular drug uptake and retention. In MCF-7/wt cells, uptake of 10-amino-CPT increased 4-fold, while retention increased over 10-fold at acidic extracellular pH. In addition, gene expression analysis of MCF-7/wt cells indicated that expression of a number of genes changed under acidic culture conditions, including down-regulation of the CPT efflux protein pump breast cancer resistance protein (BCRP). Interestingly, expression of topoisomerase I, the molecular target of CPT, was not affected by acidic growth conditions. These results highlight the importance of maintaining key features of tumor physiology in cell culture models used to study cancer biology and to discover and develop new anticancer drugs. While several substitutions at the 7 and 10 positions enhance potency, 7-halomethyl and 10-amino CPT analogs show selective activity at the acidic pH common to the microenvironment of most solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

top1:

Topoisomerase I

CPT:

Camptothecin

MD or MDO:

10,11-methylenedioxy

ED:

10,11-ethylenedioxy

MeO:

Methoxy

DFMD:

Difluoromethylenedioxy

CMMDC:

7-chloromethyl-10,11-methylenedioxy-camptothecin

SN-38:

7-ethyl-10-hydroxy-camptothecin

References

  1. Adams DJ, Dewhirst MW, Flowers JL, Gamcsik MP, Colvin OM, Manikumar G, Wani MC, Wall ME (2000) Camptothecin analogues with enhanced antitumor activity at acidic pH. Cancer Chemother Pharmacol 46:263–271

    Article  PubMed  CAS  Google Scholar 

  2. Bom D, Curran DP, Kruszewski S, Zimmer SG, Thompson Strode J, Kohlhagen G, Du W, Chavan AJ, Fraley KA, Bingcang AL, Latus LJ, Pommier Y, Burke TG (2000) The novel silatecan 7-tert-butyldimethylsilyl-10-hydroxycamptothecin displays high lipophilicity, improved human blood stability, and potent anticancer activity. J Med Chem 43:3970–3980

    Article  PubMed  CAS  Google Scholar 

  3. Bos R, van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, Semenza GL, van Diest PJ, van der Wall E (2003) Levels of hypoxia-inducible factor-1 alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97:1573–1581

    Article  PubMed  Google Scholar 

  4. Brown JM (1999) The hypoxic cell: a target for selective cancer therapy—eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 59:5863–5870

    PubMed  CAS  Google Scholar 

  5. Dan S, Tsunoda T, Kitahara O, Yanagawa R, Zembutsu H, Katagiri T, Yamazaki K, Nakamura Y, Yamori T (2002) An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res 62:1139–1147

    PubMed  CAS  Google Scholar 

  6. Flowers JL, Hoffman RM, Driscoll TA, Wall ME, Wani MC, Manikumar G, Friedman HS, Dewhirst M, Colvin OM, Adams DJ (2003) The activity of camptothecin analogues is enhanced in histocultures of human tumors and human tumor xenografts by modulation of extracellular pH. Cancer Chemother Pharmacol 52:253–261

    Article  PubMed  CAS  Google Scholar 

  7. Gamcsik MP, Kasibhatla MS, Adams DJ, Flowers JL, Colvin OM, Manikumar G, Wani M, Wall ME, Kohlhagen G, Pommier Y (2001) Dual role of glutathione in modulating camptothecin activity: depletion potentiates activity, but conjugation enhances the stability of the topoisomerase I-DNA cleavage complex. Mol Cancer Ther 1:11–20

    PubMed  CAS  Google Scholar 

  8. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198

    PubMed  CAS  Google Scholar 

  9. Giovanella B, Stehlin J, Wall M, Wani M, Nicholas A, Liu L, Silber R, Potmesil M (1989) DNA topoisomerase I-targeted chemotherapy of human colon cancer in xenografts. Science 246:1046–1048

    Article  PubMed  CAS  Google Scholar 

  10. Gruber G, Greiner RH, Hlushchuk R, Aebersold DM, Altermatt HJ, Berclaz G, Djonov V (2004) Hypoxia-inducible factor 1 alpha in high-risk breast cancer: an independent prognostic parameter? Breast Cancer Res 6:R191–R198

    Article  PubMed  CAS  Google Scholar 

  11. Hirabayashi N, Kim R, Nishiyama M, Aogi K, Saeki S, Toge T, Okada K (1992) Tissue expression of topoisomerase I and II in digestive tract cancers and adjacent normal tissues (abstract). Proc Am Assoc Cancer Res 33:436

    Google Scholar 

  12. Hohenberger P, Felgner C, Haensch W, Schlag PM (1998) Tumor oxygenation correlates with molecular growth determinants in breast cancer. Breast Cancer Res Treat 48:97–106

    Article  PubMed  CAS  Google Scholar 

  13. Husain I, Mohler JL, Seigler HF, Besterman JM (1994) Elevation of topoisomerase-I messenger-RNA, protein, and catalytic activity in human tumors—demonstration of tumor-type specificity and implications for cancer-chemotherapy. Cancer Res 54:539–546

    PubMed  CAS  Google Scholar 

  14. Jaxel C, Kohn KW, Wani MC, Wall ME, Pommier Y (1989) Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: evidence for a specific receptor site and a relation to antitumor activity. Cancer Res 49:1465–1469

    PubMed  CAS  Google Scholar 

  15. Kehrer DFS, Soepenberg O, Loos WJ, Verweij J, Sparreboom A (2001) Modulation of camptothecin analogs in the treatment of cancer: a review. Anticancer Drug 12:89–105

    Article  PubMed  CAS  Google Scholar 

  16. Lal A, Peters H, St Croix B, Haroon ZA, Dewhirst MW, Strausberg RL, Kaanders J, van der Kogel AJ, Riggins GJ (2001) Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst 93:1337–1343

    Article  PubMed  CAS  Google Scholar 

  17. Li TK, Liu LF (2001) Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41:53–77

    Article  PubMed  Google Scholar 

  18. Mahoney BP, Raghunand N, Baggett B, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66:1207–1218

    Article  PubMed  CAS  Google Scholar 

  19. Matsui S, Endo W, Wrzosek C, Haridas K, Seetharamulu P, Hausheer FH, Rustum YM (1999) Characterisation of a synergistic interaction between a thymidylate synthase inhibitor, ZD1694, and a novel lipophilic topoisomerase I inhibitor karenitecin, BNP1100: mechanisms and clinical implications. Eur J Cancer 35:984–993

    Article  PubMed  CAS  Google Scholar 

  20. Matsumoto Y, Fujiwara T, Nagao S (1995) Determinants of drug response in camptothecin-11 resistant cell lines. J Neurooncol 23:1–8

    Article  PubMed  CAS  Google Scholar 

  21. Niimi S, Nakagawa K, Sugimoto Y, Nishio K, Fujiwara Y, Yokoyama S, Terashima Y, Saijo N (1992) Mechanism of cross-resistance to a camptothecin analogue (CPT-11) in a human ovarian cancer cell line selected by cisplatin. Cancer Res 52:328–333

    PubMed  CAS  Google Scholar 

  22. Pommier Y, Pourquier P, Fan Y, Strumberg D (1998) Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1400:83–105

    PubMed  CAS  Google Scholar 

  23. Potmesil M, Hsiang Y-H, Liu L et al (1988) Topoisomerase I (topo-I) and topoisomerase II (topo-II) levels in high and low grade lymphomas. Proc Am Assoc Cancer Res 29:176

    Google Scholar 

  24. Prescott DM, Charles HC, Poulson JM, Page RL, Thrall DE, Vujaskovic Z, Dewhirst MW (2000) The relationship between intracellular and extracellular pH in spontaneous canine tumors. Clin Cancer Res 6:2501–2505

    PubMed  CAS  Google Scholar 

  25. Raghunand N, He X, van Sluis R, Mahoney B, Baggett B, Taylor CW, Paine-Murrieta G, Roe D, Bhujwalla ZM, Gillies RJ (1999) Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer 80:1005–1011

    Article  PubMed  CAS  Google Scholar 

  26. Raghunand N, Mahoney BP, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics I. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol 66:1219–1229

    Article  PubMed  CAS  Google Scholar 

  27. Runkel S, Wischnik A, Teubner J, Kaven E, Gaa J, Melchert F (1994) Oxygenation of mammary tumors as evaluated by ultrasound-guided computerized-pO2-histography. Adv Exp Med Biol 345:451–458

    PubMed  CAS  Google Scholar 

  28. Sawyer TE, Bonner JA (1996) The interaction of buthionine sulphoximine (BSO) and the topoisomerase I inhibitor CPT-11. Br J Cancer Suppl 27:S109–S113

    PubMed  CAS  Google Scholar 

  29. Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, Jakesz R, Kubista E, Birner P, Oberhuber G (2002) Overexpression of hypoxia-inducible factor 1 alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8:1831–1837

    PubMed  CAS  Google Scholar 

  30. Stubbs M, Bashford CL, Griffiths JR (2003) Understanding the tumor metabolic phenotype in the genomic era. Curr Mol Med 3:49–59

    Article  PubMed  CAS  Google Scholar 

  31. Tannock I, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    PubMed  CAS  Google Scholar 

  32. Van der Zee A, Hollema H, DeJong S, Boonstra H, Gouw A, Willemse P, Zijlstra J, de Vries E (1991) P-glycoprotein expression and DNA topoisomerase I and II activity in benign tumors of the ovary and in malignant tumors of the ovary, before and after platinum/cyclophosphamide chemotherapy. Cancer Res 51:5915–5920

    PubMed  Google Scholar 

  33. Van Hattum AH, Pinedo HM, Schluper HM, Hausheer FH, Boven E (2000) New highly lipophilic camptothecin BNP1350 is an effective drug in experimental human cancer. Int J Cancer 88:260–266

    Article  PubMed  Google Scholar 

  34. Vaupel P, Schlenger K, Knoop C, Hockel M (1991) Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51:3316–3322

    PubMed  CAS  Google Scholar 

  35. Vladu B, Woynarowski JM, Manikumar G, Wani MC, Wall ME, Von Hoff DD, Wadkins RM (2000) 7- and 10-substituted camptothecins: dependence of topoisomerase I-DNA cleavable complex formation and stability on the 7- and 10-substituents. Mol Pharmacol 57:243–251

    PubMed  CAS  Google Scholar 

  36. Wachsberger PR, Landry J, Storck C, Davis K, MD OH, Owen CS, Leeper DB, Coss RA (1997) Mammalian cells adapted to growth at pH 6.7 have elevated HSP27 levels and are resistant to cisplatin. Int J Hyperthermia 13:251–255; discussion 257–259

    Google Scholar 

  37. Wahl M, Owen J, Burd R, Herlands R, Nogami S, Rodeck U, Berd D, Leeper D, Owen C (2002) Regulation of intracellular pH in human melanoma: potential therapeutic implications. Mol Cancer Ther 1:617–628

    PubMed  CAS  Google Scholar 

  38. Wahl ML, Pooler PM, Briand P, Leeper DB, Owen CS (2000) Intracellular pH regulation in a nonmalignant and a derived malignant human breast cell line. J Cell Physiol 183:373–380

    Article  PubMed  CAS  Google Scholar 

  39. Wike-Hooley JL, Haveman J, Reinhold HS (1984) The Relevance of Tumor pH to the Treatment of Malignant Disease. Radiother Oncol 2:343–366

    Article  PubMed  CAS  Google Scholar 

  40. Williams KJ, Cowen RL, Stratford IJ (2001) Hypoxia and oxidative stress in breast cancer-Tumour hypoxia—therapeutic considerations. Breast Cancer Res 3:328–331

    Article  PubMed  CAS  Google Scholar 

  41. Wouters BG, Weppler SA, Koritzinsky M, Landuyt W, Nuyts S, Theys J, Chiu RK, Lambin P (2002) Hypoxia as a target for combined modality treatments. Eur J Cancer 38:240–257

    Article  PubMed  CAS  Google Scholar 

  42. Zunino F, Pratesi G (2004) Camptothecins in clinical development. Expert Opin Inv Drug 13:269–284

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bercedis Peterson for help in statistical interpretation of the data. This work was supported by NIH grant UO1 CA68697-02 and in part by UPHS grant CA-56690

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Adams.

Additional information

The work is dedicated to the memory of Dr. Monroe E. Wall, who inspired this research team and many other investigators committed to creating useful anticancer drugs from natural products.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, D.J., Wahl, M.L., Flowers, J.L. et al. Camptothecin analogs with enhanced activity against human breast cancer cells. II. Impact of the tumor pH gradient. Cancer Chemother Pharmacol 57, 145–154 (2006). https://doi.org/10.1007/s00280-005-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0008-5

Keywords

Navigation