Skip to main content

Advertisement

Log in

Clinically relevant concentrations of lidocaine inhibit tumor angiogenesis through suppressing VEGF/VEGFR2 signaling

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Angiogenesis, the formation of blood vessel, is required for invasive tumor growth and metastasis. In this study, the effects of lidocaine, an amide-link local anesthetic, on angiogenesis and tumor growth were investigated.

Methods

In vitro angiogenesis assays were conducted using human umbilical vascular endothelial cell (HUVEC). Essential molecules involved in vascular endothelial growth factor (VEGF) signaling were analyzed. Tumor angiogenesis was analyzed using in vivo mouse tumor model.

Results

Lidocaine at clinically relevant concentrations inhibited angiogenesis. Lidocaine inhibited endothelial cell in vitro capillary network formation on Matrigel through interfering early stage of angiogenesis. In addition, lidocaine inhibited vascular endothelial growth factor (VEGF)-stimulated endothelial cell migration and proliferation without affecting cell adhesion. Lidocaine also induced endothelial cell apoptosis in the presence of VEGF. Lidocaine suppressed VEGF-activated phosphorylation of VEGF receptor 2 (VEGFR2), PLCγ-PKC-MAPK and FAK-paxillin in endothelial cells, demonstrating that VEGF, PLC, MAPK and FAK-paxillin suppression is associated with the antiangiogenic effect of lidocaine. Importantly, the in vitro observations were translatable to in vivo B16 melanoma mouse model. Lidocaine significantly inhibited tumor angiogenesis, leading to delay of tumor growth.

Conclusions

This study is the first to report that lidocaine acts as an angiogenesis inhibitor. The findings provide preclinical evidence into the potential mechanisms by which lidocaine may negatively affect cancer growth and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang W, Liu JN, Tan XY (2009) Vaccination with xenogeneic tumor endothelial proteins isolated in situ inhibits tumor angiogenesis and spontaneous metastasis. Int J Cancer 125(1):124–132. https://doi.org/10.1002/ijc.24362

    Article  CAS  PubMed  Google Scholar 

  2. Tanigawa N, Amaya H, Matsumura M, Shimomatsuya T, Horiuchi T, Muraoka R, Iki M (1996) Extent of tumor vascularization correlates with prognosis and hematogenous metastasis in gastric carcinomas. Cancer Res 56(11):2671–2676

    CAS  PubMed  Google Scholar 

  3. Sarbia M, Bittinger F, Porschen R, Dutkowski P, Willers R, Gabbert HE (1996) Tumor vascularization and prognosis in squamous cell carcinomas of the esophagus. Anticancer Res 16(4A):2117–2121

    CAS  PubMed  Google Scholar 

  4. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105. https://doi.org/10.1177/1947601911423031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502. https://doi.org/10.1101/cshperspect.a006502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keating GM (2014) Bevacizumab: a review of its use in advanced cancer. Drugs 74(16):1891–1925. https://doi.org/10.1007/s40265-014-0302-9

    Article  CAS  PubMed  Google Scholar 

  7. Nassif E, Thibault C, Vano Y, Fournier L, Mauge L, Verkarre V, Timsit MO, Mejean A, Tartour E, Oudard S (2017) Sunitinib in kidney cancer: 10 years of experience and development. Expert Rev Anticancer Ther 17(2):129–142. https://doi.org/10.1080/14737140.2017.1272415

    Article  CAS  PubMed  Google Scholar 

  8. Poveda A, del Muro XG, Lopez-Guerrero JA, Martinez V, Romero I, Valverde C, Cubedo R, Martin-Broto J (2014) GEIS 2013 guidelines for gastrointestinal sarcomas (GIST). Cancer Chemother Pharmacol 74(5):883–898. https://doi.org/10.1007/s00280-014-2547-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Romano M, Giojelli A, Tamburrini O, Salvatore M (2003) Chemoembolization for hepatocellular carcinoma: effect of intraarterial lidocaine in peri- and post-procedural pain and hospitalization. La Radiol Med 105(4):350–355

    Google Scholar 

  10. Lee BM, Cata JP (2015) Impact of anesthesia on cancer recurrence. Revista Espanola de Anestesiologia y Reanimacion 62(10):570–575. https://doi.org/10.1016/j.redar.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  11. Mao L, Lin S, Lin J (2013) The effects of anesthetics on tumor progression. Int J Physiol Pathophysiol Pharmacol 5(1):1–10

    PubMed  PubMed Central  Google Scholar 

  12. Chen WK, Miao CH (2013) The effect of anesthetic technique on survival in human cancers: a meta-analysis of retrospective and prospective studies. PLoS One 8(2):e56540. https://doi.org/10.1371/journal.pone.0056540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang L, Hu R, Cheng Y, Wu X, Xi S, Sun Y, Jiang H (2017) Lidocaine inhibits the proliferation of lung cancer by regulating the expression of GOLT1A. Cell Prolif. https://doi.org/10.1111/cpr.12364

    Article  PubMed  Google Scholar 

  14. Xing W, Chen DT, Pan JH, Chen YH, Yan Y, Li Q, Xue RF, Yuan YF, Zeng WA (2017) Lidocaine induces apoptosis and suppresses tumor growth in human hepatocellular carcinoma cells in vitro and in a xenograft model in vivo. Anesthesiology 126(5):868–881. https://doi.org/10.1097/ALN.0000000000001528

    Article  CAS  PubMed  Google Scholar 

  15. Piegeler T, Schlapfer M, Dull RO, Schwartz DE, Borgeat A, Minshall RD, Beck-Schimmer B (2015) Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFalpha-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase. Br J Anaesth 115(5):784–791. https://doi.org/10.1093/bja/aev341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li K, Yang J, Han X (2014) Lidocaine sensitizes the cytotoxicity of cisplatin in breast cancer cells via up-regulation of RARbeta2 and RASSF1A demethylation. Int J Mol Sci 15(12):23519–23536. https://doi.org/10.3390/ijms151223519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xuan W, Zhao H, Hankin J, Chen L, Yao S, Ma D (2016) Local anesthetic bupivacaine induced ovarian and prostate cancer apoptotic cell death and underlying mechanisms in vitro. Sci Rep 6:26277. https://doi.org/10.1038/srep26277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bundscherer A, Malsy M, Gebhardt K, Metterlein T, Plank C, Wiese CH, Gruber M, Graf BM (2015) Effects of ropivacaine, bupivacaine and sufentanil in colon and pancreatic cancer cells in vitro. Pharmacol Res 95–96:126–131. https://doi.org/10.1016/j.phrs.2015.03.017

    Article  CAS  PubMed  Google Scholar 

  19. Suehiro J, Hamakubo T, Kodama T, Aird WC, Minami T (2010) Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood 115(12):2520–2532. https://doi.org/10.1182/blood-2009-07-233478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiang W, Ke Z, Zhang Y, Cheng GH, Irwan ID, Sulochana KN, Potturi P, Wang Z, Yang H, Wang J, Zhuo L, Kini RM, Ge R (2011) Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice. J Cell Mol Med 15(2):359–374. https://doi.org/10.1111/j.1582-4934.2009.00961.x

    Article  CAS  PubMed  Google Scholar 

  21. Madri JA, Pratt BM (1986) Endothelial cell-matrix interactions: in vitro models of angiogenesis. J Histochem Cytochem 34(1):85–91

    Article  CAS  Google Scholar 

  22. Kaba A, Laurent SR, Detroz BJ, Sessler DI, Durieux ME, Lamy ML, Joris JL (2007) Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology 106(1):11–18 (discussion 15–16)

    Article  CAS  Google Scholar 

  23. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circulation Res 97(11):1093–1107. https://doi.org/10.1161/01.RES.0000191547.64391.e3 pii]

    Article  CAS  PubMed  Google Scholar 

  24. Haraldsen G, Kvale D, Lien B, Farstad IN, Brandtzaeg P (1996) Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J Immunol 156(7):2558–2565

    CAS  PubMed  Google Scholar 

  25. Ferrara N (2005) The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 94:209–231

    Google Scholar 

  26. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371. https://doi.org/10.1038/nrm1911

    Article  CAS  PubMed  Google Scholar 

  27. Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S (2017) Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev. https://doi.org/10.1002/med.21452

    Article  PubMed  Google Scholar 

  28. Parums DV, Cordell JL, Micklem K, Heryet AR, Gatter KC, Mason DY (1990) JC70: a new monoclonal antibody that detects vascular endothelium associated antigen on routinely processed tissue sections. J Clin Pathol 43(9):752–757

    Article  CAS  Google Scholar 

  29. Zhou CL, Li JJ, Ji P (2017) Propofol suppresses esophageal squamous cell carcinoma cell migration and invasion by down-regulation of sex-determining region Y-box 4 (SOX4). Med Sci Monit 23:419–427

    Article  CAS  Google Scholar 

  30. Li H, Lu Y, Pang Y, Li M, Cheng X, Chen J (2017) Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway. Biomed Pharmacother 86:324–333. https://doi.org/10.1016/j.biopha.2016.12.036

    Article  CAS  PubMed  Google Scholar 

  31. Gupta K, Kshirsagar S, Chang L, Schwartz R, Law PY, Yee D, Hebbel RP (2002) Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res 62(15):4491–4498

    CAS  PubMed  Google Scholar 

  32. Le Gac G, Angenard G, Clement B, Laviolle B, Coulouarn C, Beloeil H (2017) Local anesthetics inhibit the growth of human hepatocellular carcinoma cells. Anesth Anal 125(5):1600–1609. https://doi.org/10.1213/ANE.0000000000002429

    Article  CAS  Google Scholar 

  33. Piegeler T, Votta-Velis EG, Liu G, Place AT, Schwartz DE, Beck-Schimmer B, Minshall RD, Borgeat A (2012) Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology 117(3):548–559. https://doi.org/10.1097/ALN.0b013e3182661977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Auerbach R, Akhtar N, Lewis RL, Shinners BL (2000) Angiogenesis assays: problems and pitfalls. Cancer Metastasis Rev 19(1–2):167–172

    Article  CAS  Google Scholar 

  35. Koodie L, Yuan H, Pumper JA, Yu H, Charboneau R, Ramkrishnan S, Roy S (2014) Morphine inhibits migration of tumor-infiltrating leukocytes and suppresses angiogenesis associated with tumor growth in mice. Am J Pathol 184(4):1073–1084. https://doi.org/10.1016/j.ajpath.2013.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo XG, Wang S, Xu YB, Zhuang J (2015) Propofol suppresses invasion, angiogenesis and survival of EC-1 cells in vitro by regulation of S100A4 expression. Eur Rev Med Pharmacol Sci 19(24):4858–4865

    PubMed  Google Scholar 

  37. Xu YB, Du QH, Zhang MY, Yun P, He CY (2013) Propofol suppresses proliferation, invasion and angiogenesis by down-regulating ERK-VEGF/MMP-9 signaling in Eca-109 esophageal squamous cell carcinoma cells. Eur Rev Med Pharmacol Sci 17(18):2486–2494

    PubMed  Google Scholar 

  38. Hirata M, Sakaguchi M, Mochida C, Sotozono C, Kageyama K, Kuroda Y, Hirose M (2004) Lidocaine inhibits tyrosine kinase activity of the epidermal growth factor receptor and suppresses proliferation of corneal epithelial cells. Anesthesiology 100(5):1206–1210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant provided by Hubei University of Arts and Science (RG2015668).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesong Wang.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Research involving human participants and/or animals

All the procedures involving human participants were performed in accordance with the ethical standards of the national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All the procedures involving animals were conducted according to the guidelines approved by the Institutional Animal Care and Use Committee of Hubei University of Arts and Science

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Hu, H. & Wang, X. Clinically relevant concentrations of lidocaine inhibit tumor angiogenesis through suppressing VEGF/VEGFR2 signaling. Cancer Chemother Pharmacol 83, 1007–1015 (2019). https://doi.org/10.1007/s00280-019-03815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03815-4

Keywords

Navigation