Skip to main content

Advertisement

Log in

Antifungal innate immunity: recognition and inflammatory networks

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

A large variety of fungi are present in the environment, among which a proportion colonizes the human body, usually without causing any harm. However, depending on the host immune status, commensals can become opportunistic pathogens that induce diseases ranging from superficial non-harmful infection to life-threatening systemic disease. The interplay between the host and the fungal commensal flora is being orchestrated by an efficient recognition of the microorganisms, which in turn ensures a proper balance between tolerance of the normal fungal flora and induction of immune defense mechanisms when invasion occurs. Pattern recognition receptors (PRRs) play a significant role in maintaining this balance due to their capacity to sense fungi and induce host responses such as the induction of proinflammatory cytokines involved in the activation of innate and adaptive immune responses. In the present review, we will discuss the most recent findings regarding the recognition of Candida albicans and Aspergillus fumigatus and the different types of immune cells that play a role in antifungal host defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yapar N (2014) Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag 10:95–105

    Article  PubMed Central  PubMed  Google Scholar 

  2. Vermeulen E et al (2013) Azole resistance in Aspergillus fumigatus: a growing public health concern. Curr Opin Infect Dis 26:493–500

    Article  CAS  PubMed  Google Scholar 

  3. Sudbery P et al (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324

    Article  CAS  PubMed  Google Scholar 

  4. Netea MG et al (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78

    Article  CAS  PubMed  Google Scholar 

  5. Chai LY et al (2010) Anti-Aspergillus human host defence relies on type 1 T helper (Th1), rather than type 17 T helper (Th17), cellular immunity. Immunology 130:46–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Saijo S et al (2010) Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32:681–691

    Article  CAS  PubMed  Google Scholar 

  7. Ifrim DC et al (2014) Role of Dectin-2 for host defense against systemic infection with Candida glabrata. Infect Immun 82:1064–1073

    Article  PubMed Central  PubMed  Google Scholar 

  8. Zhu LL et al (2013) C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39:324–334

    Article  CAS  PubMed  Google Scholar 

  9. Sun H et al (2013) Dectin-2 is predominately macrophage restricted and exhibits conspicuous expression during Aspergillus fumigatus invasion in human lung. Cell Immunol 284:60–67

    Article  CAS  PubMed  Google Scholar 

  10. Jouault T et al (2006) Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 177:4679–4687

    Article  CAS  PubMed  Google Scholar 

  11. Linden JR et al (2013) Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol 51:641–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wells CA et al (2008) The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180:7404–7413

    Article  CAS  PubMed  Google Scholar 

  13. Cambi A et al (2008) Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J Biol Chem 283:20590–20599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Serrano-Gomez D et al (2004) Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol 173:5635–5643

    Article  CAS  PubMed  Google Scholar 

  15. Saevarsdottir S et al (2004) The potential role of mannan-binding lectin in the clearance of self-components including immune complexes. Scand J Immunol 60:23–29

    Article  CAS  PubMed  Google Scholar 

  16. Brown GD et al (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196:407–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Goodridge HS et al (2011) Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'. Nature 472:471–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gresnigt MS et al (2013) Aspergillus fumigatus-induced IL-22 is not restricted to a specific Th cell subset and is dependent on complement receptor 3. J Immunol 190:5629–5639

    Article  CAS  PubMed  Google Scholar 

  19. Becker KL et al. (2014) Pattern recognition pathways leading to a Th2 cytokine bias in ABPA patients. Clin Exp Allergy. doi:10.1111/cea.12354.

  20. Slesiona S et al (2012) Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages. PLoS One 7:e31223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Steele C et al. (2005) The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. In PLoS Pathog 1(4): e42. doi:10.1371/journal.ppat.0010042

  22. Werner JL et al (2011) Neutrophils produce interleukin 17A (IL-17A) in a dectin-1- and IL-23-dependent manner during invasive fungal infection. Infect Immun 79:3966–3977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lilly LM et al (2012) The beta-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J Immunol 189:3653–3660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kyrmizi I et al (2013) Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J Immunol 191:1287–1299

    Article  CAS  PubMed  Google Scholar 

  25. McKinley L et al (2008) TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol 181:4089–4097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cunha C et al (2013) Human genetic susceptibility to invasive aspergillosis. PLoS Pathog 9:e1003434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Smeekens SP et al (2013) Genetic susceptibility to Candida infections. EMBO Mol Med 5:805–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bellocchio S et al (2004) The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172:3059–3069

    Article  CAS  PubMed  Google Scholar 

  29. Netea MG et al (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172:3712–3718

    Article  CAS  PubMed  Google Scholar 

  30. Netea MG et al (2002) The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185:1483–1489

    Article  CAS  PubMed  Google Scholar 

  31. Bochud PY et al (2008) Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 359:1766–1777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Balloy V et al (2005) Involvement of toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect Immun 73:5420–5425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Nahum A et al (2011) The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J Allergy Clin Immunol 127:528–531

    Article  CAS  PubMed  Google Scholar 

  34. Carvalho A et al (2012) TLR3 essentially promotes protective class I-restricted memory CD8(+) T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 119:967–977

    Article  CAS  PubMed  Google Scholar 

  35. Wagener J et al (2014) Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog 10:e1004050

    Article  PubMed Central  PubMed  Google Scholar 

  36. Robinson MJ et al (2009) Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206:2037–2051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Gross O et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436

    Article  CAS  PubMed  Google Scholar 

  38. Hise AG et al (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5:487–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Said-Sadier N et al (2010) Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One 5:e10008

    Article  PubMed Central  PubMed  Google Scholar 

  40. Moyes DL et al (2010) A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8:225–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Botterel F et al (2008) Phagocytosis of Aspergillus fumigatus conidia by primary nasal epithelial cells in vitro. BMC Microbiol 8:97

    Article  PubMed Central  PubMed  Google Scholar 

  42. Reales-Calderon JA et al (2014) Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics 14:1503–1518

    Article  CAS  PubMed  Google Scholar 

  43. Lionakis MS et al (2013) CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest 123:5035–5051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ngo LY et al (2014) Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J Infect Dis 209:109–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hohl TM et al (2009) Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6:470–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Espinosa V et al (2014) Inflammatory monocytes orchestrate innate antifungal immunity in the lung. PLoS Pathog 10:e1003940

    Article  PubMed Central  PubMed  Google Scholar 

  47. Mircescu MM et al (2009) Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection. J Infect Dis 200:647–656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Amulic B et al (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489

    Article  CAS  PubMed  Google Scholar 

  49. Zarember KA et al (2007) Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. J Immunol 178:6367–6373

    Article  CAS  PubMed  Google Scholar 

  50. McCormick A et al (2010) NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect 12:928–936

    Article  CAS  PubMed  Google Scholar 

  51. Menegazzi R et al (2012) Killing by neutrophil extracellular traps: fact or folklore? Blood 119:1214–1216

    Article  CAS  PubMed  Google Scholar 

  52. Bruns S et al (2010) Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog 6:e1000873

    Article  PubMed Central  PubMed  Google Scholar 

  53. Bianchi M et al (2011) Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J Allergy Clin Immunol 127(1243–52):e7

    PubMed  Google Scholar 

  54. Urban CF et al (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5:e1000639

    Article  PubMed Central  PubMed  Google Scholar 

  55. Grimm MJ et al (2013) Monocyte- and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice. J Immunol 190:4175–4184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. de Luca A et al (2014) IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci U S A 111:3526–3531

    Article  PubMed Central  PubMed  Google Scholar 

  57. Smeekens SP et al (2014) Autophagy is redundant for the host defense against systemic Candida albicans infections. Eur J Clin Microbiol Infect Dis 33:711–722

    Article  CAS  PubMed  Google Scholar 

  58. Nicola AM et al (2012) Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans. Infect Immun 80:3065–3076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Gazendam RP et al (2014) Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood 124(4):590–597

    Article  CAS  PubMed  Google Scholar 

  60. Taylor PR et al (2014) Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nat Immunol 15:143–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Huppler AR et al (2014) Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis. J Immunol 192:1745–1752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Yano J et al (2012) The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. PLoS One 7:e46311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Fidan I et al (2014) In vitro effects of Candida albicans and Aspergillus fumigatus on dendritic cells and the role of beta glucan in this effect. Adv Clin Exp Med 23:17–24

    Article  PubMed  Google Scholar 

  64. Biondo C et al (2011) Recognition of yeast nucleic acids triggers a host-protective type I interferon response. Eur J Immunol 41:1969–1979

    Article  CAS  PubMed  Google Scholar 

  65. del Fresno C et al (2013) Interferon-beta production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity 38:1176–1186

    Article  PubMed  Google Scholar 

  66. Bourgeois C et al (2011) Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-beta signaling. J Immunol 186:3104–3112

    Article  CAS  PubMed  Google Scholar 

  67. Bonifazi P et al (2010) Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunol 3:193–205

    Article  CAS  PubMed  Google Scholar 

  68. Fei M et al (2011) TNF-alpha from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection. Proc Natl Acad Sci U S A 108:5360–5365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Ramirez-Ortiz ZG et al (2011) A nonredundant role for plasmacytoid dendritic cells in host defense against the human fungal pathogen Aspergillus fumigatus. Cell Host Microbe 9:415–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. LeBlanc DM et al (2006) Role for dendritic cells in immunoregulation during experimental vaginal candidiasis. Infect Immun 74:3213–3221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. van de Veerdonk FL et al (2009) The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5:329–340

    Article  PubMed  Google Scholar 

  72. Conti HR et al (2009) Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206:299–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Minegishi Y et al (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–1062

    Article  CAS  PubMed  Google Scholar 

  74. van de Veerdonk FL et al (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365:54–61

    Article  PubMed  Google Scholar 

  75. Gladiator A et al (2013) Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol 190:521–525

    Article  CAS  PubMed  Google Scholar 

  76. Mear JB et al (2014) Candida albicans airway exposure primes the lung innate immune response against Pseudomonas aeruginosa infection through innate lymphoid cell recruitment and interleukin-22-associated mucosal response. Infect Immun 82:306–315

    Article  PubMed Central  PubMed  Google Scholar 

  77. Shaw JL et al (2013) IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med 188:432–439

    Article  CAS  PubMed  Google Scholar 

  78. Albacker LA et al (2013) Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity. Nat Med 19:1297–1304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Quintin J et al (2014) Differential role of NK cells against Candida albicans infection in immunocompetent or immunocompromised mice. Eur J Immunol 44(8):2405–2414

    Article  CAS  PubMed  Google Scholar 

  80. Voigt J et al (2014) Human natural killer cells acting as phagocytes against Candida albicans and mounting an inflammatory response that modulates neutrophil antifungal activity. J Infect Dis 209:616–626

    Article  CAS  PubMed  Google Scholar 

  81. Schmidt S et al (2011) Human natural killer cells exhibit direct activity against Aspergillus fumigatus hyphae, but not against resting conidia. J Infect Dis 203:430–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Bouzani M et al (2011) Human NK cells display important antifungal activity against Aspergillus fumigatus, which is directly mediated by IFN-gamma release. J Immunol 187:1369–1376

    Article  CAS  PubMed  Google Scholar 

  83. Park SJ et al (2009) Early NK cell-derived IFN-{gamma} is essential to host defense in neutropenic invasive aspergillosis. J Immunol 182:4306–4312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Robert R et al (2000) Adherence of platelets to Candida species in vivo. Infect Immun 68:570–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Drago L et al (2013) Antimicrobial activity of pure platelet-rich plasma against microorganisms isolated from oral cavity. BMC Microbiol 13:47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Rodland EK et al (2010) Activation of platelets by Aspergillus fumigatus and potential role of platelets in the immunopathogenesis of aspergillosis. Infect Immun 78:1269–1275

    Article  PubMed Central  PubMed  Google Scholar 

  87. Speth C et al (2013) Aspergillus fumigatus activates thrombocytes by secretion of soluble compounds. J Infect Dis 207:823–833

    Article  CAS  PubMed  Google Scholar 

  88. Quintin J et al (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:223–232

    Article  CAS  PubMed  Google Scholar 

  89. Ifrim DC et al (2014) Trained immunity or tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clin Vaccine Immunol 21:534–545

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the AllFUN EU-FP7 grant. M.G.N. was partly supported by a Vici Grant of the Netherlands Organization for Scientific Research. F.vd.V. was partly supported by a Veni Grant of the Netherlands Organization for Scientific Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank L. van de Veerdonk.

Additional information

This article is a contribution to the special issue on Immunopathology of Fungal Diseases - Guest Editor: Jean-Paul Latge

Katharina L. Becker and Daniela C. Ifrim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, K.L., Ifrim, D.C., Quintin, J. et al. Antifungal innate immunity: recognition and inflammatory networks. Semin Immunopathol 37, 107–116 (2015). https://doi.org/10.1007/s00281-014-0467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0467-z

Keywords

Navigation