Skip to main content
Log in

Expression Vectors for the Rapid Purification of Recombinant Proteins in Bacillus subtilis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

We describe the construction of six novel plasmid-based IPTG-inducible expression vectors for Bacillus subtilis and related species. While one vector allows intracellular production of recombinant proteins, the second provides a strong secretion signal. The third vector allows addition of the c-Myc epitope tag, and the remaining three vectors provide the purification tags His and Strep. The versatility of all six vectors was demonstrated by the insertion of several reporter genes and by their regulated overexpression. Recombinant proteins with a His- or Strep-tag could be purified to near homogeneity in a single step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Literature Cited

  1. Anderson RP, Roth JR (1977) Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol 31:473–505

    Article  PubMed  CAS  Google Scholar 

  2. Cornet P, Millet J, Béguin P, Aubert JP (1983) Characterization of two cel (cellulose degradation) genes of Clostridium thermocellum coding for endogluanases. Bio/Technology 1:589–594

    Article  CAS  Google Scholar 

  3. Evan GI, Lewis GK, Ramsay G, Bishop JM (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5:3610–3616

    PubMed  CAS  Google Scholar 

  4. Harwood CR (1992) Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol 10:247–256

    Article  PubMed  CAS  Google Scholar 

  5. Hirata H, Fukazawa T, Negoro S, Okada H (1986) Structure of a β-galactosidase gene of Bacillus stearothermophilus. J Bacteriol 166:722–727

    PubMed  CAS  Google Scholar 

  6. Hochuli E (1990) Purification of recombinant proteins with metal chelate adsorbent. Genet Eng (NY) 12:87–98

    CAS  Google Scholar 

  7. Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W (1997) The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol. 179:1153–1164

    PubMed  CAS  Google Scholar 

  8. Junttila MR, Saarinen S, Schmidt T, Kast J, Westermarck J (2005) Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics 5:1199–1203

    Article  PubMed  CAS  Google Scholar 

  9. Kaltwasser M, Wiegert T, Schumann W (2001) Construction and application of epitope- and GFT-tagging integration vectors for Bacillus subtilis. Appl Environ Microbiol 68:2624–2628

    Article  CAS  Google Scholar 

  10. Kim L, Mogk A, Schumann W (1996) A xylose-inducible Bacillus subtilis integration vector and its application. Gene 181:71–76

    Article  PubMed  CAS  Google Scholar 

  11. Meima R, Van Dijl JM, Bron S (2004) Expression systems in Bacillus. In F Baneyx (ed) Protein expression technologies. Horizon Bioscience, Norfold, UK pp 199–252

    Google Scholar 

  12. Nguyen DH, Nguyen QA, Ferreira RC, Ferreira LCS, Tran LT, Schumann W. (2004) Construction of plasmid-based expression vectors for Bacillus subtilis. Plasmid 54:241–248

    Article  CAS  Google Scholar 

  13. Nguyen HD, Schumann W (2006) Establishment of an experimental system allowing immobilization of proteins on the surface of Bacillus subtilis cells. J Biotechnol 122:473–482

    Article  PubMed  CAS  Google Scholar 

  14. Pallen MJ, Lam AC, Antonio M, Dunbar K (2001) An embarrassment of sortases: a richness of substrates? Trends Microbiol 9:97–101

    Article  PubMed  CAS  Google Scholar 

  15. Palva I (1982) Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis. Gene 19:81–87

    Article  PubMed  CAS  Google Scholar 

  16. Phan TTP, Nguyen HD, Schumann W (2006) Novel plasmid-based expression vectors for intra- and extracellular production of recombinant proteins in Bacillus subtilis. Protein Expr Purif 46:189–195

    Article  PubMed  CAS  Google Scholar 

  17. Ripio MT, Dominguez-Bernal G, Suarez M, Brehem K, Berche P, Vazquez-Boland JA (1996) Transcriptional activation of virulence genes in wild-type strains of Listeria monocytogenes in response to a change in the extracellular medium composition. Res Microbiol 147:371–378

    Article  PubMed  CAS  Google Scholar 

  18. Saito H, Shibata T, Ando T (1979) Mapping of genes determining nonpermissiveness and host-specific restriction to bacteriophages in Bacillus subtilis Marburg. Mol Gen Genet 170:117–122

    Article  PubMed  CAS  Google Scholar 

  19. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  PubMed  CAS  Google Scholar 

  20. Schmidt TG, Koepke J, Frank R, Skerra A (1996) Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J Mol Biol 255:753–766

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt TG, Skerra A (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng 6:109–122

    Article  PubMed  CAS  Google Scholar 

  22. Scholz Q, Thiel A, Hillen W, Niederweis M (2000) Quantitative analysis of gene expression with an improved green fluorescent protein. Eur J Biochem 267:1565–1570

    Article  PubMed  CAS  Google Scholar 

  23. Schulz A, Schwab S, Versteeg S, Schumann W (1997) The htpG gene of Bacillus subtilis belongs to class III heat shock genes and is under negative control. J Bacteriol 10:3103–3109

    Google Scholar 

  24. Titok MA, Chapuis J, Selezneva YV, Lagodich AV, Prokulevich VA, Ehrlich SD, Jannière L (2003) Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid 49:53–62

    Article  PubMed  CAS  Google Scholar 

  25. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DLR (VNB02/B03), the MOST (Life Science-643204), and the Bayerische Forschungsstiftung grants to T.T.P.P. All vectors can be ordered from Mobitec (http://www.mobitec.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, H.D., Phan, T.T.P. & Schumann, W. Expression Vectors for the Rapid Purification of Recombinant Proteins in Bacillus subtilis . Curr Microbiol 55, 89–93 (2007). https://doi.org/10.1007/s00284-006-0419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0419-5

Keywords

Navigation