Skip to main content

Advertisement

Log in

Proteomic Insights into Helicobacter pylori Coccoid Forms Under Oxidative Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Helicobacter pylori, an etiological agent of gastroduodenal diseases, undergoes drastic morphological transition from spiral shape to coccoid form under oxidative stress. However, the knowledge of the specific expression profile in response to oxidative stress is relatively limited. Here, we report global proteomic analysis of H. pylori coccoids under oxidative stress. Two-dimensional gel electrophoresis analysis of H. pylori featuring coccoid revealed that 10 unique protein spots exhibit different expression profiles with comparison of that under normal microaerophilic condition. In total, seven proteins including superoxide dismutase, alkyl hydroperoxide reductase, urease G, and so forth were confirmed using matrix-assisted laser desorption/ionization time-of-flight/mass spectroscopy and then validated by reverse transcription–polymerase chain reaction, indicating that they play key roles in the physiological adaptation mechanisms of H. pylori to oxygen challenge. These data provide preliminary insights into H. pylori on coccoid generation under oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baek HY, Lim JM, Kim H et al (2004) Oxidative-stress-related proteome changes in Helicobacter pylori-infected human gastric mucosa. Biochem J 379:291–299

    Article  PubMed  CAS  Google Scholar 

  2. Bjorkholm B, Salama NR (2003) Genomics of helicobacter 2003. Helicobacter 8(Suppl 1):1–7

    Article  PubMed  Google Scholar 

  3. Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215

    Article  PubMed  CAS  Google Scholar 

  4. Chuang MH, Wu MS, Lin JT, Chiou SH (2005) Proteomic analysis of proteins expressed by Helicobacter pylori under oxidative stress. Proteomics 5:3895–3901

    Article  PubMed  CAS  Google Scholar 

  5. Citterio B, Casaroli A, Pierfelici L, Battistelli M, Falcieri E, Baffone W (2004) Morphological changes and outer membrane protein patterns in Helicobacter pylori during conversion from bacillary to coccoid form. New Microbiol 27:353–360

    PubMed  CAS  Google Scholar 

  6. Davis GS, Mobley HL (2005) Contribution of dppA to urease activity in Helicobacter pylori 26695. Helicobacter 10:416–423

    Article  PubMed  CAS  Google Scholar 

  7. Han YH, Liu WZ, Shi YZ et al (2007) Comparative genomics profiling of clinical isolates of Helicobacter pylori in Chinese populations using DNA microarray. J Microbiol 45:21–28

    PubMed  CAS  Google Scholar 

  8. Haseltine CA, Kowalczykowski SC (2002) A distinctive single-strand DNA-binding protein from the Archaeon Sulfolobus solfataricus. Mol Microbiol 43:1505–1515

    Article  PubMed  CAS  Google Scholar 

  9. Kansau I, Guillain FThiberge JM, Labigne A (1996) Nickel binding and immunological properties of the C-terminal domain of the Helicobacter pylori GroES homologue (HspA). Mol Microbiol 22:1013–1023

    Article  PubMed  CAS  Google Scholar 

  10. Khin MM, Ringner M, Aleljung P, Wadstrom T, Ho B (1996) Binding of human plasminogen and lactoferrin by Helicobacter pylori coccoid forms. J Med Microbiol 45:433–439

    Article  PubMed  CAS  Google Scholar 

  11. Lu H, Yamaoka Y, Graham DY (2005) Helicobacter pylori virulence factors: facts and fantasies. Curr Opin Gastroenterol 21:653–659

    Article  PubMed  Google Scholar 

  12. McAtee CP, Fry KE, Berg DE (1998) Identification of potential diagnostic and vaccine candidates of Helicobacter pylori by “proteome” technologies. Helicobacter 3:163–169

    PubMed  CAS  Google Scholar 

  13. Mollenhauer-Rektorschek M, Hanauer G, Sachs G, Melchers K (2002) Expression of UreI is required for intragastric transit and colonization of gerbil gastric mucosa by Helicobacter pylori. Res Microbiol 153:659–666

    Article  PubMed  CAS  Google Scholar 

  14. Monstein HJ, Jonasson J (2001) Differential virulence-gene mRNA expression in coccoid forms of Helicobacter pylori. Biochem Biophys Res Commun 285:530–536

    Article  PubMed  CAS  Google Scholar 

  15. Nakamura A, Park A, Nagata K et al (2000) Oxidative cellular damage associated with transformation of Helicobacter pylori from a bacillary to a coccoid form. Free Radical Biol Med 28:1611–1618

    Article  CAS  Google Scholar 

  16. Nilsson HO, Blom J, Abu-Al-Soud W, Ljungh AA, Andersen LP, Wadstrom T (2002) Effect of cold starvation, acid stress, and nutrients on metabolic activity of Helicobacter pylori. Appl Environ Microbiol 68:11–19

    Article  PubMed  CAS  Google Scholar 

  17. Seyler RW Jr, Olson JW, Maier RJ (2001) Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization. Infect Immun 69:4034–4040

    Article  PubMed  CAS  Google Scholar 

  18. Suerbaum S, Thiberge JM, Kansau I, Ferrero RL, Labigne A (1994) Helicobacter pylori hspA-hspB heat-shock gene cluster: nucleotide sequence, expression, putative function and immunogenicity. Mol Microbiol 14:959–974

    Article  PubMed  CAS  Google Scholar 

  19. Willen R, Carlen B, Wang X, Papadogiannakis N, Odselius R, Wadstrom T (2000) Morphologic conversion of Helicobacter pylori from spiral to coccoid form. Scanning (SEM) and transmission electron microscopy (TEM) suggest viability. Upsala J Med Sci 105:31–40

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Youjun Feng, a visiting scholar in Faculty of Medical Laboratory Science, Third Military Medical University (present address: Department of Microbiology, University of Illinois at Urbana-Champaign (UIUC), USA) for critical reading of the manuscript. We are grateful to Dr. Zhi Rong Mou (Institute of Immunology, Third Military Medical University, China) for technical assistance in the utilization of ImageMasterTM 2D Elite version 3.10 software and MALDI-TOF-based peptide determination. This work was supported by the Chinese National Program for High Technology Research and Development (2003AA215020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Ming Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, H., Guo, G., Mao, X.H. et al. Proteomic Insights into Helicobacter pylori Coccoid Forms Under Oxidative Stress. Curr Microbiol 57, 281–286 (2008). https://doi.org/10.1007/s00284-008-9190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9190-0

Keywords

Navigation