Skip to main content
Log in

Microenvironment driven invasion: a multiscale multimodel investigation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cancer is a complex, multiscale process, in which genetic mutations occurring at a subcellular level manifest themselves as functional and morphological changes at the cellular and tissue scale. The importance of interactions between tumour cells and their microenvironment is currently of great interest in experimental as well as computational modelling. Both the immediate microenvironment (e.g. cell–cell signalling or cell–matrix interactions) and the extended microenvironment (e.g. nutrient supply or a host tissue structure) are thought to play crucial roles in both tumour progression and suppression. In this paper we focus on tumour invasion, as defined by the emergence of a fingering morphology, which has previously been shown to be dependent upon harsh microenvironmental conditions. Using three different modelling approaches at two different spatial scales we examine the impact of nutrient availability as a driving force for invasion. Specifically we investigate how cell metabolism (the intrinsic rate of nutrient consumption and cell resistance to starvation) influences the growing tumour. We also discuss how dynamical changes in genetic makeup and morphological characteristics, of the tumour population, are driven by extreme changes in nutrient supply during tumour development. The simulation results indicate that aggressive phenotypes produce tumour fingering in poor nutrient, but not rich, microenvironments. The implication of these results is that an invasive outcome appears to be co-dependent upon the evolutionary dynamics of the tumour population driven by the microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alarcon T, Byrne HM, Maini PK (2005) A multiple scale model for tumor growth. Multiscale Model Simul 3: 440–475

    Article  MATH  MathSciNet  Google Scholar 

  2. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7: 139–147

    Article  Google Scholar 

  3. Alexandrova R (2001) Tumour heterogeneity. Exp Pathol Parasitol 4: 57–67

    Google Scholar 

  4. Anderson ARA (2003) A hybrid discrete-continuum technique for individual based migration models. In: Alt W, Chaplain M, Griebel M, Lenz J(eds) Polymer and cell dynamics. Birkhauser, Basel

    Google Scholar 

  5. Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. IMA J Math Med Biol 22: 163–186

    Article  MATH  Google Scholar 

  6. Anderson ARA (2007) A hybrid multiscale model of tumour invasion: evolution and the microenvironment. In: Anderson ARA, Chaplain MAJ, Rejniak KA(eds) Single-cell-based models in biology and medicine. Birkhauser, Basel

    Chapter  Google Scholar 

  7. Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumour-induced angiogenesis angiogenesis. Bull Math Biol 60: 857–899

    Article  MATH  Google Scholar 

  8. Anderson ARA, Chaplain MAJ, Newman EL, Steele RJC, Thompson AM (2000) Mathematical modelling of tumour invasion and metastasis. J Theor Med 2: 129–154

    MATH  Google Scholar 

  9. Anderson ARA, Chaplain MAJ, Rejniak KA (2007) Single-cell-based models in biology and medicine. Birkhauser, Basel

    Book  Google Scholar 

  10. Anderson ARA, Pitcairn A (2003) Application of the hybrid discrete-continuum technique. In: Alt W, Chaplain M, Griebel M, Lenz J(eds) Polymer and cell dynamics. Birkhauser, Basel

    Google Scholar 

  11. Anderson ARA, Sleeman BD, Young IM, Griffiths BS (1997) Nematode movement along a chemical gradient in a structurally heterogeneous environment. II. Theory. Fundam Appl Nematol 20: 165–172

    Google Scholar 

  12. Anderson ARA, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127: 905–915

    Article  Google Scholar 

  13. Ao M, Williams K, Bhowmick NA, Hayward SW (2006) Transforming growth factor-β promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer Res 66: 8007–8016

    Article  Google Scholar 

  14. Araujo RP, McElwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modeling. Bull Math Biol 66: 1039–1091

    Article  MathSciNet  Google Scholar 

  15. Ben-Jacob E, Cohen I, Levine H (2000) Cooperative self-organization of microorganisms. Adv Phys 49: 395–554

    Article  Google Scholar 

  16. Ben-Jacob E, Garik P (1990) The formation of patterns in non-equilibrium growth. Nature 343: 523–530

    Article  Google Scholar 

  17. Bierie B, Moses HL (2006) Tumour microenvironment: TGF, the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6: 506–520

    Article  Google Scholar 

  18. Bray D (1990) Intracellular signalling as a parallel distributed process. J Theor Biol 143: 215–231

    Article  Google Scholar 

  19. Brown JM, Wilson WR (2004) Exploring tumour hypoxia in cancer treatment. Nat Rev Cancer 4: 437–447

    Article  Google Scholar 

  20. Byrne HM, Chaplain MAJ (1995) Growth of non-necrotic tumours in the presence and absence of inhibitors. Math Biosci 130: 151–181

    Article  MATH  Google Scholar 

  21. Byrne HM, Chaplain MAJ (1996) Growth of necrotic tumours in the presence and absence of inhibitors. Math Biosci 135: 187–216

    Article  MATH  Google Scholar 

  22. Byrne HM, Chaplain MAJ (1996) Modelling the role of cell–cell adhesion in the growth and development of carcinomas. Math Comput Model 24: 1–17

    Article  MATH  Google Scholar 

  23. Byrne HM, Chaplain MAJ (1998) Free boundary problems arising in models of tumour growth and development. EJAM 8: 639–658

    MathSciNet  Google Scholar 

  24. Casciari JJ, Sotirchos SV, Sutherland RM (1992) Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J Cell Physiol 151: 386–394

    Article  Google Scholar 

  25. Cavallaro U, Christofori G (2004) Cell adhesion and signaling by cadherins and ig-cams in cancer. Nat Cancer Rev 4: 118–132

    Google Scholar 

  26. Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasmino- gen activation system. M3AS 15: 1685–1734

    MATH  MathSciNet  Google Scholar 

  27. Chaplain MAJ, Graziano L, Preziosi L (2006) Mathematical modelling of the loss of tissue compression resposiveness and its role in solid tumour development. Math Med Biol 23: 197–229

    Article  MATH  Google Scholar 

  28. Cristini V, Frieboes HB, Gatenby R, Caserta S, Ferrari M, Sinek J (2005) Morphologic instability and cancer invasion. Clin Cancer Res 11: 6772–6779

    Article  Google Scholar 

  29. Daccord G, Nittmann J, Stanley HE (1986) Radial viscous fingers and diffusion-limited aggregation: fractal dimension and growth sites. Phys Rev Lett 56(4): 336–339

    Article  Google Scholar 

  30. Debruyne PR, Bruyneel EA, Karaguni I-M (2002) Bile acids stimulate invasion and haptotaxis in human corectal cancer cells through activation of multiple oncogneic signalling pathways. Oncogene 21: 6740–6750

    Article  Google Scholar 

  31. Dormann S, Deutsch A (2002) Modeling of self-organzied avascular tumor growth with a hybrid cellular automaton. In Silico Biol 2: 393–406

    Google Scholar 

  32. Drasdo D, Höhme S (2005) A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys Biol 2: 133–147

    Article  Google Scholar 

  33. Düchting W (1990) Tumor growth simulation. Comput. Graphics 14: 505–508

    Article  Google Scholar 

  34. Eden M (1961) A two dimensional growth process. Proc 4th Berkpley Symp Math Stat Prob 4: 223

    MathSciNet  Google Scholar 

  35. Ferreira SC, Martins ML, Vilela MJ (2002) Reaction–diffusion model for the growth of avascular tumor. Phys Rev E 65: 021907

    Article  MathSciNet  Google Scholar 

  36. Friedl P, Hegerfeldt Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48: 441–449

    Article  Google Scholar 

  37. Freyer JP, Sutherland RM (1985) A reduction in the in situ rates of oxygen and glucose consumption of cells on EMT6/Ro spheroids during growth. J Cell Physiol 124: 516–524

    Article  Google Scholar 

  38. Freyer JP, Sutherland RM (1986) Regulation of growth saturation and development of necrosis in emt6/ro multicellular spheroids by the glucose and oxygen supply. Cancer Res 46: 3513–3520

    Google Scholar 

  39. Gatenby RA, Gawlinski ET (1996) A reaction–diffusion model of cancer invasion. Cancer Res 56: 5745–5753

    Google Scholar 

  40. Gerlee P, Anderson ARA (2007) An evolutionary hybrid cellular automaton model of solid tumour growth. J Theor Biol 246(4): 583–603

    Article  MathSciNet  Google Scholar 

  41. Gerlee P, Anderson ARA (2007) Stability analysis of a hybrid cellular automaton model of cell colony growth. Phys Rev E 75: 051911

    Article  Google Scholar 

  42. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70

    Article  Google Scholar 

  43. Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, New Jersey

    MATH  Google Scholar 

  44. Höckel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56: 4059–4515

    Google Scholar 

  45. Jiang Y, Pjesivac-Grbovic JA, Cantrell C, Freyer JP (2005) A multiscale model for avascular tumour growth. Biophys J 89: 3884–3894

    Article  Google Scholar 

  46. Kansal AR, Torquato S, Harsh GR, Chiocca EA, Deisboeck TS (2000) Simulated brain tumor growth using a three-dimensional cellular automaton. J Theor Biol 203: 367–382

    Article  Google Scholar 

  47. Kessler DA, Koplik J, Levine H (1988) Pattern selection in fingered growth phenomena. Adv Phys 37: 255–339

    Article  Google Scholar 

  48. Klominek J, Robert KH, Sundqvist K-G (1993) Chemotaxis and haptotaxis of human malignant mesothelioma cells: effects of fibronectin, laminin, type IV collagen, and an autocrine motility factor-like substance. Cancer Res 53: 4376–4382

    Google Scholar 

  49. Lane DP (1994) The regulation of p53 function. Steiner Award Lecture. Int J Cancer 57: 623–627

    Article  Google Scholar 

  50. Liotta LA, Clair T (2000) Checkpoints for invasion. Nature 405: 287–288

    Article  Google Scholar 

  51. Lopez JM, Jensen HJ (2002) Generic model of morphological changes in growing colonies of fungi. Phys Rev E 65(2): 021903

    Article  Google Scholar 

  52. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21: 485–495

    Article  Google Scholar 

  53. Macklin P, Lowengrub JS (2005) Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth. J Comput Phys 203(1): 191–220

    Article  MATH  MathSciNet  Google Scholar 

  54. Mallon E, Osin P, Nasiri N, Blain I, Howard B, Gusterson B (2000) The basic pathology of human breast cancer. J Mammary Gland Biol Neoplasia 5: 139–63

    Article  Google Scholar 

  55. Matsushita M, Fujikawa H (1990) Diffusion-limited growth in bacterial colony formation. Physica A 168: 498–506

    Article  Google Scholar 

  56. Matsushita M, Sano M, Hayakawa Y, Honjo H, Sawada Y (1984) Fractal structures of zinc metal leaves grown by electrodeposition. Phys Rev Lett 53(3): 286–289

    Article  Google Scholar 

  57. Matsushita M, Wakita J, Itoh H, Watanabe K, Arai T, Matsuyama T, Sakaguchi H, Mimura M (1999) Formation of colony patterns by a bacterial cell population. Physica A 274: 190–199

    Article  Google Scholar 

  58. Mueller-Klieser WF, Sutherland RM (1982) Oxygen tension in multicellular spheroids of two cell lines. Br J Cancer 45: 256–264

    Google Scholar 

  59. Mueller-Klieser W (1987) Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol 113: 101–122

    Article  Google Scholar 

  60. Mullins WW, Sekerka RF (1963) Morphological stability of a particle growing by diffusion or heat flow. J Appl Phys 34(2): 323–329

    Article  Google Scholar 

  61. Nowell PC (1976) The clonal evolution of tumour cell populations. Science 194: 23–28

    Article  Google Scholar 

  62. Orme ME, Chaplain MAJ (1996) A mathematical model of vascular tumour growth and invasion. Mathl Comp Model 23: 43–60

    Article  MATH  Google Scholar 

  63. Overall CM, Kleifeld O (2006) Tumour microenvironment ϠOpinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6: 227–239

    Article  Google Scholar 

  64. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8: 241–254

    Article  Google Scholar 

  65. Patel AA, Gawlinski EE, Lemieux SK, Gatenby RA (2001) A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. J Theor Biol 213: 315–331

    Article  MathSciNet  Google Scholar 

  66. Peinado H, Olmeda D, Cano A (2007) Snail, ZEB and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat Rev Cancer 7: 415–428

    Article  Google Scholar 

  67. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3: 347–361

    Article  Google Scholar 

  68. Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM (1996) Biological inferences from a mathematical model of malignant invasion. Invasion Metastases 16: 209–221

    Google Scholar 

  69. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10: 252–271

    Article  MATH  MathSciNet  Google Scholar 

  70. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25: 220–252

    Article  MATH  MathSciNet  Google Scholar 

  71. Peskin CS (2002) The immersed boundary method. Acta Numer 11: 479–517

    Article  MATH  MathSciNet  Google Scholar 

  72. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical recipes in C: the art of scientific computing. Cambridge University, Cambridge

    Google Scholar 

  73. Preziosi L (2003) Cancer modelling and simulation. CRC Press, West Palm Beach, FL

    MATH  Google Scholar 

  74. Qi A, Zheng X, Du C, An B (1993) A Cellular automaton model of cancerous growth. J Theor Biol 161: 1–12

    Article  Google Scholar 

  75. Rejniak KA (2005) A single-cell approach in modeling the dynamics of tumor microregions. Math Biosci Eng 2: 643–655

    MATH  MathSciNet  Google Scholar 

  76. Rejniak KA (2007) An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol 247: 186–204

    Article  MathSciNet  Google Scholar 

  77. Rejniak KA (2007) Modelling the development of complex tissues using individual viscoelastic cells. In: Anderson ARA, Chaplain MAJ, Rejniak KA(eds) Single-cell-based models in biology and medicine. Birkhauser, Basel

    Google Scholar 

  78. Rejniak KA, Anderson ARA (2008) A computational study of the development of epithelial acini. I. Sufficient conditions for the formation of a hollow structure. Bull Math Biol. 70(3): 677–712

    Article  MATH  MathSciNet  Google Scholar 

  79. Rejniak KA, Anderson ARA (2008) A computational study of the development of epithelial acini. II. Necessary conditions for structure and lumen stability. Bull Math Biol 70(5): 1450–1479

    Article  MATH  MathSciNet  Google Scholar 

  80. Rejniak KA, Dillon RH (2007) A single cell based model of the ductal tumor microarchitecture. Comput Math Methods Med 8(1): 51–69

    Article  MATH  MathSciNet  Google Scholar 

  81. Rejniak KA, Kliman HJ, Fauci LJ (2004) A computational model of the mechanics of growth of the villous trophoblast bilayer. Bull Math Biol 66: 199–232

    Article  MathSciNet  Google Scholar 

  82. Scott EL, Britton NF, Glazier JA, Zajac M (1999) Stochastic simulation of benign avascular tumour growth using the Potts Model. Math Computer Model 30: 183–198

    Article  Google Scholar 

  83. Shannon CE (1948) A mathematical theory of information. Bell Syst Tech J 27: 379–423

    MATH  MathSciNet  Google Scholar 

  84. Sherratt JA, Nowak MA (1992) Oncogenes, anti-oncogenes and the immune response to cancer: a mathematical model. Proc R Soc Lond B 248: 261–271

    Article  Google Scholar 

  85. Smolle J, Stettner H (1993) Computer simulation of tumour cell invasion by a stochastic growth model. J Theor Biol 160: 63–72

    Article  Google Scholar 

  86. Soussi T, Lozano G (2005) p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 331: 834–842

    Article  Google Scholar 

  87. Swanson KR, Bridge C, Murray JD, Alvord EC Jr (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216: 1–10

    Article  Google Scholar 

  88. Turner S, Sherratt JA (2002) Intracellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J Theor Biol 216: 85–100

    Article  MathSciNet  Google Scholar 

  89. Ward JP, King JR (1999) Mathematical modelling of avascular-tumour growth. II. Modelling growth saturation. IMA J Math Appl Med Biol 16: 171–211

    Article  MATH  Google Scholar 

  90. Wittekind C, Compton CC, Greene FL, Sobin LH (2002) TNM residual tumor classification revisited. Cancer 94: 2511–2516

    Article  Google Scholar 

  91. Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47(19): 1400–1403

    Article  Google Scholar 

  92. Zhang L, Athale CA, Deisboeck TS (2007) Development of a three-dimensional multiscale agent-based tumor model: Simulating gene–protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J Theor Biol 244: 96–107

    Article  MathSciNet  Google Scholar 

  93. Zheng X, Wise SM, Cristini V (2005) Nonlinear simulation of tumour necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull Math Biol 67: 211–256

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander R. A. Anderson.

Additional information

A. R. A. Anderson, K. A. Rejniak, and P. Gerlee contributed equally to the paper.

This work was supported by the U.S. National Cancer Institute Integrative Cancer Biology Program (U54 CA 113007).

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (ZIP 8367 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, A.R.A., Rejniak, K.A., Gerlee, P. et al. Microenvironment driven invasion: a multiscale multimodel investigation. J. Math. Biol. 58, 579–624 (2009). https://doi.org/10.1007/s00285-008-0210-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0210-2

Mathematics Subject Classification (2000)

Navigation