Skip to main content
Log in

Calculations for multi-type age-dependent binary branching processes

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This article provides a method for calculating the joint probability density for the topology and the node times of a tree which has been produced by an multi-type age-dependent binary branching process and then sampled at a given time. These processes are a generalization, in two ways, of the constant rate birth–death process. There are a finite number of types of particle instead of a single type: each particle behaves in the same way as all others of the same type, but different types can behave differently. Secondly, the lifetime of a particle (before it either dies, changes to another type, or splits into 2) follows an arbitrary distribution, instead of the exponential lifetime in the constant rate case. Two applications concern models for macroevolution: the particles represent species, and the extant species are randomly sampled. In one application, 1-type and 2-type models for macroevolution are compared. The other is aimed at Bayesian phylogenetic analysis where the models considered here can provide a more realistic and more robust prior distribution over trees than is usually used. A third application is in the study of cell proliferation, where various types of cell can divide and differentiate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agapow PM, Purvis A (2002) Power of eight tree shape statistics to detect nonrandom diversification: a comparison by simulation of two models of cladogenesis. Syst Biol 51: 866–872

    Article  Google Scholar 

  • Aldous D (1996) Probability distributions on cladograms. In: Random discrete structures (Minneapolis, MN, 1993). IMA Vol Math Appl 76:1–18. Springer, New York. http://www.stat.berkeley.edu/users/aldous/Papers/me69.pdf

  • Aldous DJ (2001) Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Stat Sci 16: 23–34

    Article  MathSciNet  MATH  Google Scholar 

  • Aldous D, Popovic L (2005) A critical branching process model for biodiversity. Adv Appl Probab 37(4): 1094–1115

    Article  MathSciNet  MATH  Google Scholar 

  • Alroy J (2008) Dynamics of origination and extinction in the marine fossil record. Natl Acad Sci USA 105(1): 11536–11542

    Article  Google Scholar 

  • Arrizon V, Tepichin E, Ortiz-Gutierrez M, Lohmann AW, Alroy J (1996) Constant extinction, constrained diversification, and uncoordinated stasis in north american mammals. Palaeogeogr Palaeoclimatol Palaeoecol 127(1): 285–311

    Article  Google Scholar 

  • Athreya KB, Ney PE (1972) Branching processes. Springer, Berlin

    MATH  Google Scholar 

  • Bellman R, Harris TE (1952) On age-dependent binary branching processes. Ann Math 55: 280–295

    Article  MathSciNet  Google Scholar 

  • Berger JO (1985) Statistical decision theory and bayesian analysis, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Blum MGB, François O (2007) Which random processes describe the tree of life? A large-scale study of phylogenetic tree imbalance. Syst Biol 55(4): 685–691

    Article  Google Scholar 

  • Brandley MC, Leach AD, Warren DL, McGuire JA (2006) Are unequal clade priors problematic for Bayesian phylogenetics?. Syst Biol 55(1): 138–146

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5): e88. doi:10.1371/journal.pbio.0040088

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214

    Article  Google Scholar 

  • Felsenstein J (2003) Inferring phylogenies. Sinauer Associates, Sunderland. http://dx.doi.org/10.1016/S0022-0000(02)00003-X

  • Ford D (2005) Probabilities on cladogram: introduction to the alpha model. http://arxiv.org/abs/math/0511246

  • Ford D, Matsen E, Stadler T (2009) A method for investigating relative timing information on phylogenetic trees. Syst Biol 58: 167–183

    Article  Google Scholar 

  • Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253: 769–778

    Article  Google Scholar 

  • Gernhard T, Hartmann K, Steel M (2008) Stochastic properties of generalised Yule models, with biodiversity applications. J Math Biol 57: 713–735

    Article  MathSciNet  MATH  Google Scholar 

  • Heath TA, Zwickl DJ, Kim J, Hillis DM (2008) Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. Syst Biol 57(1): 160–166

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755. http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics17.html

    Google Scholar 

  • Hyrien O, Chen R, Mayer-Proöschel M, Noble M (2010) Saddlepoint approximations to the moments of multitype age-dependent branching processes, with applications. Biometrics 66(2): 567–577

    Article  MATH  Google Scholar 

  • Hyrien O, Mayer-Proschel M, Noble M, Yakovlev A (2005) A stochastic model to analyze clonal data on multi type cell populations. Biometrics 61: 199–207

    Article  MathSciNet  MATH  Google Scholar 

  • Jones G (2010) Tree models for macro-evolution and phylogenetic analysis. Syst Biol (to appear)

  • Kimmel M, Axelrod D (2002) Branching processes in biology. Springer, Berlin

    MATH  Google Scholar 

  • Kirkpatrick M, Slatkin M (1993) Searching for evolutionary patterns in the shape of a phylogenetic tree. Evolution 47: 1171–1181

    Article  Google Scholar 

  • Kontoleon N (2006) The Markovian binary tree: a model of the macroevolutionary process. PhD thesis, The University of Adelaide

  • Lawton JH, May RM (1995) Extinction rates. Oxford University Press, USA

    Google Scholar 

  • Lepage T, Bryant D, Philippe H, Lartillot N (2007) A general comparison of relaxed molecular clock models. Mol Biol Evol. doi:10.1093/molbev/msm193

  • Nedelman J, Downs H, Pharr P (1987) Inference for an age-dependent, multitype branching-process model of mast cells. J Math Biol 25: 203–226

    MathSciNet  MATH  Google Scholar 

  • Nee S, May RM, Harvey PH (1994) The reconstructed evolutionary process. Philos Trans Biol Sci 344(1309): 305–311

    Article  Google Scholar 

  • Pickett KM, Randle CP (2005) Strange Bayes indeed: uniform topological priors imply non-uniform clade priors. Mol Phylogenet Evol 34: 203–211

    Article  Google Scholar 

  • Pickett KM, Randle CP (2006) Are nonuniform clade priors important in Bayesian phylogenetic analysis? A response to Brandley et al. Syst Biol 55(1): 147–151

    Article  Google Scholar 

  • Pinelis I (2003) Evolutionary models of phylogenetic trees. Proc Biol Sci 270(1522): 1425–1431. doi:10.1098/rspb.2003.2374

    Article  MathSciNet  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. ISBN 3-900051-07-0

  • Sepkoski JJ Jr (1998) Rates of speciation in the fossil record. Philos Trans R Soc Lond B 353: 315–326

    Article  Google Scholar 

  • Stadler T (2008) Evolving trees—models for speciation and extinction in phylogenetics. PhD thesis, Technische Universität München, Zentrum Mathematik

  • Stadler T (2009) On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J Theor Biol 261: 58–66

    Article  Google Scholar 

  • Steel M, McKenzie A (2001) Properties of phylogenetic trees generated by Yule-type speciation models. Math Biosci 170(1): 91–112

    Article  MathSciNet  MATH  Google Scholar 

  • Venditti C, Meade A, Pagel M (2009) Phylogenies reveal new interpretation of speciation and the red queen. Nature 463: 349–352

    Article  Google Scholar 

  • Yakovlev AY, Yanev NM (1989) Transient processes in cell proliferation kinetics. Springer, Berlin

    MATH  Google Scholar 

  • Yang Z, Rannala B (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43: 304–311

    Article  Google Scholar 

  • Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol Biol Evol 14(7): 717–724

    Google Scholar 

  • Yang Z, Rannala B (2005) Branch-length prior influences Bayesian posterior probability of phylogeny. Syst Biol 54(3): 455–470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, G. Calculations for multi-type age-dependent binary branching processes. J. Math. Biol. 63, 33–56 (2011). https://doi.org/10.1007/s00285-010-0362-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0362-8

Keywords

Mathematics Subject Classification (2000)

Navigation