Skip to main content

Advertisement

Log in

Continuum and discrete approach in modeling biofilm development and structure: a review

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas F, Sudarsan R, Eberl HJ (2012) Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Math Biosc Eng 9(2):215–239

  • Alpkvist E, Klapper I (2007) A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull Math Biol 69(2):765–789

    Article  MATH  Google Scholar 

  • Alpkvist E, Picioreanu C, van Loosdrecht M, Heyden A (2006) Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol Bioeng 94(5):961–979

    Article  Google Scholar 

  • Alpkvist E, Bengtsson J, Overgaard NC, Christensson M, Heyden A (2007) Simulation of nitrification of municipal wastewater in a moving bed biofilm process: a bottom-up approach based on a 2D-continuum model for growth and detachment. Water Sci Technol 55:247–255

    Article  Google Scholar 

  • Anguige K, King JR, Ward JP (2005) Modelling antibiotic-and anti-quorum sensing treatment of a spatially-structured pseudomonas aeruginosa population. J Math Biol 51:557–594

    Article  MathSciNet  MATH  Google Scholar 

  • Anguige K, King JR, Ward JP (2006) A multi-phase mathematical model of quorum sensing in a maturing pseudomonas aeruginosa biofilm. Math Biosci 203:240–276

    Article  MathSciNet  MATH  Google Scholar 

  • Aristotelous AC, Klapper I, Grabovsky Y, Pabst B, Pitts B, Stewart PS (2015) Diffusive transport through a model host-biofilm system. Phys Rev E 92(022):703

    Google Scholar 

  • Atkinson B, Davies IJ (1974) The overall rate of substrate uptake (reaction) by microbial films. Part i-a biological rate equation. Trans Inst Chem Eng 52:260–268

    Google Scholar 

  • Balaban NQ, Gerdes K, Lewis K, McKinney JD (2013) A problem of persistence: still more questions than answers? Nat Rev Microbiol 11:587–591

    Article  Google Scholar 

  • Barker GC, Grimson MJ (1993) A cellular automaton model of microbial growth. Binary Comput Microbiol 5(4):132–137

    Google Scholar 

  • Batstone DJ, Picioreanu C, Van Loosdrecht MCM (2006) Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Res 40:3099–3108

    Article  Google Scholar 

  • Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirok A, Vicsek T (1994) Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368(6466):46–49

    Article  Google Scholar 

  • Beyenal H, Lewandowski Z (2005) Modeling mass transport and microbial activity in stratified biofilms. Chem Eng Sci 60(15):4337–4348

    Article  Google Scholar 

  • Bianchini R, Natalini R (2016) Global existence and asymptotic stability of smooth solutions to a fluid dynamics model of biofilms in one space dimension. J Math Anal Appl 434:1909–1923

    Article  MathSciNet  MATH  Google Scholar 

  • Billings N, Birjiniuk A, Samad TS, Doyle PS, Ribbeck K (2015) Material properties of biofilmsa review of methods for understanding permeability and mechanics. Rep Prog Phys 78(036):601

    Google Scholar 

  • Böl M, Möhle RB, Haesner M, Neu TR, Horn H, Krull R (2009) 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Biotechnol Bioeng 103:177–186

    Article  Google Scholar 

  • Böl M, Ehret AE, Bolea Albero A, Hellriegel J, Krull R (2013) Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Crit Rev Biotechnol 33(2):145–171

    Article  Google Scholar 

  • Bolea Albero A, Ehret AE, Böl M (2014) A new approach to the simulation of microbial biofilms by a theory of fluid-like pressure-restricted finite growth. Comput Methods Appl Mech Eng 272:271–289

    Article  MathSciNet  MATH  Google Scholar 

  • Boltz J, Morgenroth E, Sen D (2010) Mathematical modelling of biofilms and biofilm reactors for engineering design. Water Sci Technol 62:1821–1836

    Article  Google Scholar 

  • Boltz JP, Smets BF, Rittmann BE, van Loosdrecht MCM, Morgenroth E, Daigger GT (2017) From biofilm ecology to reactors: a focused review. Water Sci Technol 75(8):1753–1760

    Article  Google Scholar 

  • Boraey MA, Guaily A, Epstein M (2015) A hybrid model for biofilm growth on a deformable substratum. Can J Chem Eng 93(5):789–797

    Article  Google Scholar 

  • Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27:1017–1032

    Article  Google Scholar 

  • Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22(2):84–91

    Article  Google Scholar 

  • Chambless JD, Hunt SM, Stewart PS (2006) A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol 72(3):2005–2013

    Article  Google Scholar 

  • Chang I, Gilbert ES, Eliashberg N, Keasling JD (2003) A three-dimensional, stochastic simulation of biofilm growth and transport-related factors that affect structure. Microbiol SGM 149(10):2859–2871

    Article  Google Scholar 

  • Chaudhry MAS, Beg SA (1998) A review on the mathematical modeling of biofilm processes: advances in fundamentals of biofilm modeling. Chem Eng Technol 21(9):701–710

    Article  Google Scholar 

  • Chen C, Hou S, Ren D, Ren M, Wang Q (2015) 3-D spatio-temporal structures of biofilms in a water channel. Math Methods Appl Sci 38(18):4461–4478

    Article  MathSciNet  MATH  Google Scholar 

  • Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002) A mathematical model of quorum sensing in a growing bacterial biofilm. J Ind Microbiol Biotechnol 29(6):339–346

    Article  MATH  Google Scholar 

  • Chopp DL, Kirisits MJ, Moran B, Parsek MR (2003) The dependence of quorum sensing on the depth of a growing biofilm. Bull Math Biol 65:1053–1079

    Article  MATH  Google Scholar 

  • Clarelli F, Di Russo C, Natalini R, Ribot M (2013) A fluid dynamics model of the growth of phototrophic biofilms. J Math Biol 66:1387–1408

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG (2006) Effects of persister formation on bacterial response to dosing. J Theor Biol 238(3):694–703

    Article  MathSciNet  Google Scholar 

  • Cogan NG (2007a) Hybrid numerical treatment of two-fluid problems with passive interfaces. Commun Appl Math Comput Sci 2(1):117–133

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG (2007b) Incorporating toxin hypothesis into a mathematical model of persister formation and dynamics. J Theor Biol 248(2):340–349

    Article  MathSciNet  Google Scholar 

  • Cogan NG (2008) Two-fluid model of biofilm disinfection. Bull Math Biol 70(3):800–819

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG (2010) An extension of the boundary integral method applied to periodic disinfection of a dynamic biofilm. SIAM J Appl Math 70(7):2281–2307

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG (2011) Computational exploration of disinfection of bacterial biofilms in partially blocked channels. Int J Numer Method Biomed Eng 27:1982–1995

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG (2013) Concepts in disinfection of bacterial populations. Math Biosci 245:111–125

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG, Keener JP (2004) The role of the biofilm matrix in structural development. Math Med Biol 21(2):147–166

    Article  MATH  Google Scholar 

  • Cogan NG, Keener JP (2005) Channel formation in gels. SIAM J Appl Math 65(6):1839–1854

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG, Cortez R, Fauci L (2005) Modeling physiological resistance in bacterial biofilms. Bull Math Biol 67(4):831–853

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG, Gunn JS, Wozniak DJ (2011) Biofilms and infectious diseases: biology to mathematics and back again. FEMS Microbiol Lett 322:1–7

    Article  Google Scholar 

  • Cogan NG, Brown J, Darres K, Petty K (2012) Optimal control strategies for disinfection of bacterial populations with persister and susceptible dynamics. Antimicrob Agents Chemother 56:4816–4826

    Article  Google Scholar 

  • Cogan NG, Szomolay B, Dindos M (2013) Effect of periodic disinfection on persisters in a one-dimensional biofilm model. Bull Math Biol 75:94–123

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG, Harro JM, Stoodley P, Shirtliff ME (2016) Predictive computer models for biofilm detachment properties in pseudomonas aeruginosa. mBio 7:e00,815–16

    Article  Google Scholar 

  • Colasanti RL (1992) Cellular automata models of microbial colonies. Binary: Comput Microbiol 4:191–191

    Google Scholar 

  • Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15(3):137–140

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176(8):2137

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745

    Article  Google Scholar 

  • Cumsille P, Asenjo JA, Conca C (2014) A novel model for biofilm growth and its resolution by using the hybrid immersed interface-level set method. Comput Math Appl 67(1):34–51

    Article  MathSciNet  MATH  Google Scholar 

  • D’Acunto B, Frunzo L (2011) Qualitative analysis and simulations of a free boundary problem for multispecies biofilm models. Math Comput Model 53(9):1596–1606

    Article  MathSciNet  MATH  Google Scholar 

  • D’Acunto B, Frunzo L (2012) Free boundary problem for an initial cell layer in multispecies biofilm formation. Appl Math Lett 25(1):20–26

    Article  MathSciNet  MATH  Google Scholar 

  • D’Acunto B, Esposito G, Frunzo L, Pirozzi F (2011) Dynamic modeling of sulfate reducing biofilms. Comput Math Appl 62(6):2601–2608

    Article  MathSciNet  MATH  Google Scholar 

  • D’Acunto B, Frunzo L, Klapper I, Mattei MR (2015) Modeling multispecies biofilms including new bacterial species invasion. Math Biosci 259:20–26

    Article  MathSciNet  MATH  Google Scholar 

  • D’Acunto B, Frunzo L, Mattei MR (2016) Qualitative analysis of the moving boundary problem for a biofilm reactor model. J Math Anal App 438(1):474–491

    Article  MathSciNet  MATH  Google Scholar 

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    Article  Google Scholar 

  • Derlon N, Coufort-Saudejaud C, Queinnec I, Paul E (2013) Growth limiting conditions and denitrification govern extent and frequency of volume detachment of biofilms. Chem Eng J 218:368–375

    Article  Google Scholar 

  • Dillon R, Fauci L, Fogelson A, Gaver D (1996) Modeling biofilm processes using the immersed boundary method. J Comput Phys 129:57–73

    Article  MATH  Google Scholar 

  • Dockery JD, Keener JP (2001) A mathematical model for quorum sensing in pseudomonas aeruginosa. Bull Math Biol 63:95–116

    Article  MATH  Google Scholar 

  • Dodds MG, Grobe KJ, Stewart PS (2000) Modeling biofilm antimicrobial resistance. Biotechnol Bioeng 68:456–465

    Article  Google Scholar 

  • Duddu R, Bordas S, Chopp D, Moran B (2008) A combined extended finite element and level set method for biofilm growth. Int J Numer Methods Eng 74(5):848–870

    Article  MathSciNet  MATH  Google Scholar 

  • Duddu R, Chopp D, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103(1):92–104

    Article  Google Scholar 

  • Dupin HJ, Kitanidis PK, McCarty PL (2001) Pore-scale modeling of biological clogging due to aggregate expansion: a material mechanics approach. Water Resour Res 37(12):2965–2979

    Article  Google Scholar 

  • Duvnjak A, Eberl HJ (2006) Time-discretisation of a degenerate reaction-diffusion equation arising in biofilm modeling, el. Trans Numer Anal 23:15–38

    MATH  Google Scholar 

  • Eberl HJ (2003) What do biofilm models, mechanical ducks, and artificial life have in common? In: Wilderer PA, Bishop PL, Wuertz S (eds) Biofilms in wastewater treatment. IWA Publishing, London, pp 8–31

    Google Scholar 

  • Eberl HJ, Demaret L (2007) A finite difference scheme for a degenerated diffusion equation arising in microbial ecology. Electron J Differ Equ 15:77–95

    MathSciNet  MATH  Google Scholar 

  • Eberl HJ, Efendiev MA (2003) A transient density dependent diffusion-reaction model for the limitation of antibiotic penetration in biofilms. Electron J Differ Equ 10:123–142

    MathSciNet  MATH  Google Scholar 

  • Eberl HJ, Sudarsan R (2008) Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection. J Theor Biol 253(4):788–807

    Article  MathSciNet  Google Scholar 

  • Eberl HJ, Picioreanu C, Heijnen JJ, Van Loosdrecht MCM (2000) A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms. Chem Eng Sci 55:6209–6222

    Article  Google Scholar 

  • Eberl HJ, Parker DF, Van Loosdrecht M (2001) A new deterministic spatio-temporal continuum model for biofilm development. Comput Math Methods Med 3(3):161–175

    MATH  Google Scholar 

  • Eberl HJ, Khassehkhan H, Demaret L (2010) A mixed-culture model of a probiotic biofilm control system. Comput Math Methods Med 11:99–118

    Article  MathSciNet  MATH  Google Scholar 

  • Efendiev MA, Eberl HJ, Zelik SV (2002) Existence and longtime behavior of solutions of a nonlinear reaction-diffusion system arising in the modeling of biofilms. RIMS Kokyuroko 1258:49–71

    MathSciNet  Google Scholar 

  • Efendiev MA, Demaret L, Lasser R, Eberl HJ (2008) Analysis and simulation of a meso-scale model of diffusive resistance of bacterial biofilms to penetration of antibiotics. Adv Math Sci Appl 18(1):269–304

  • Efendiev MA, Zelik S, Eberl HJ (2009) Existence and longtime behavior of a biofilm model. Commun Pure Appl Anal 8:509–531

    Article  MathSciNet  MATH  Google Scholar 

  • Ehret AE, Böl M (2013) Modelling mechanical characteristics of microbial biofilms by network theory. J R Soc Med 10:20120676

    Google Scholar 

  • Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36(5):990–1004

    Article  Google Scholar 

  • Emerenini BO, Hense BA, Kuttler C, Eberl HJ (2015) A mathematical model of quorum sensing induced biofilm detachment. PLoS ONE 10(e0132):385

    Google Scholar 

  • Emerenini BO, Sonner S, Eberl HJ (2017) Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Math Biosci Eng 14:625–653

    MathSciNet  MATH  Google Scholar 

  • Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160(1):97–133

    Article  Google Scholar 

  • Ferrer J, Prats C, López D (2008) Individual-based modelling: an essential tool for microbiology. J Biol Phys 34(1–2):19–37

    Article  Google Scholar 

  • Flemming HC (2014) The biofilm mode of life. In: Krauss G-J, Nies DH (eds) Ecological Biochemistry: environmental and interspecies interactions. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 277–291

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  Google Scholar 

  • Fowler AC, Kyrke-Smith TM, Winstanley HF (2016a) The development of biofilm architecture. Proc R Soc A 472:20150798

    Article  MathSciNet  MATH  Google Scholar 

  • Fowler AC, Kyrke-Smith TM, Winstanley HF (2016b) The development of biofilm architecture. Proc R Soc A 472(2188):20150798

    Article  MathSciNet  MATH  Google Scholar 

  • Fozard JA, Lees M, King JR, Logan BS (2012) Inhibition of quorum sensing in a computational biofilm simulation. Biosystems 109:105–114

    Article  Google Scholar 

  • Frederick MR, Kuttler C, Hense BA, Müller J, Eberl HJ (2010) A mathematical model of quorum sensing in patchy biofilm communities with slow background flow. Can Appl Math Q 18:267–298

    MathSciNet  MATH  Google Scholar 

  • Frederick MR, Kuttler C, Hense BA, Eberl HJ (2011) A mathematical model of quorum sensing regulated eps production in biofilm communities. Theor Biol Med Model 8:1–29

    Article  Google Scholar 

  • Fujikawa H (1994) Diversity of the growth patterns of bacillus subtilis colonies on agar plates. FEMS Microbiol Ecol 13(3):159–168

    Article  Google Scholar 

  • Fujikawa H, Matsushita M (1989) Fractal growth of bacillus subtilis on agar plates. J Phys Soc Jpn 58(11):3875–3878

    Article  Google Scholar 

  • Gonzo EE, Wuertz S, Rajal VB (2012) Continuum heterogeneous biofilm model-a simple and accurate method for effectiveness factor determination. Biotechnol Bioeng 109(7):1779–1790

    Article  Google Scholar 

  • Gonzo EE, Wuertz S, Rajal VB (2014) The continuum heterogeneous biofilm model with multiple limiting substrate monod kinetics. Biotechnol Bioeng 111:2252–2264

    Article  Google Scholar 

  • Hammond JF, Stewart EJ, Younger JG, Solomon MJ, Bortz DM (2013) Spatially heterogeneous biofilm simulations using an immersed boundary method with lagrangian nodes defined by bacterial locations. arXiv preprint arXiv:1302.3663

  • Hammond JF, Stewart EJ, Younger JG, Solomon MJ, Bortz DM (2014) Variable viscosity and density biofilm simulations using an immersed boundary method, part i: numerical scheme and convergence results. Comput Model Eng Sci 98:295–340

    MathSciNet  MATH  Google Scholar 

  • Harremoes P (1978) Biofilm kinetics. In: Mitchell R (ed) Water pollution microbiology. Wiley, New York, pp 71–109

    Google Scholar 

  • Hauser M, Vafai K (2013) Analysis of the multidimensional effects in biofilms. Int J Heat Mass Transf 56(1):340–349

    Article  Google Scholar 

  • Head D (2016) Biomechanical analysis of infectious biofilms. Adv Exp Med Biol 915:99–114

    Article  Google Scholar 

  • Helaine S, Kugelberg E (2014) Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol 22:417–424

    Article  Google Scholar 

  • Hellweger FL, Bucci V (2009) A bunch of tiny individuals-individual-based modeling for microbes. Ecol Modell 220(1):8–22

    Article  Google Scholar 

  • Hellweger FL, Clegg RJ, Clark JR, Plugge CM, Kreft JU (2016) Advancing microbial sciences by individual-based modelling. Nat Rev Microbiol 14:461–471

    Article  Google Scholar 

  • Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  Google Scholar 

  • Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Investig 112:1300–1307

    Article  Google Scholar 

  • Hermanowicz SW (1998) A model of two-dimensional biofilm morphology. Water Sci Technol 37(4–5):219–222

    Google Scholar 

  • Hermanowicz SW (1999) Two-dimensional simulations of biofilm development: effects of external environmental conditions. Water Sci Technol 39(7):107–114

    Google Scholar 

  • Hermanowicz SW (2001) A simple 2D biofilm model yields a variety of morphological features. Math Biosci 169(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Hofer U (2016) Biofilms: turning tides for quorum sensing. Nat Rev Microbiol 14:64–65

    Article  Google Scholar 

  • Horn H, Lackner S (2014) Modeling of biofilm systems: a review. In: Productive biofilms. Springer, pp 53–76

  • Hunt SM, Hamilton MA, Sears JT, Harkin G, Reno J (2003) A computer investigation of chemically mediated detachment in bacterial biofilms. Microbiol SGM 149(5):1155–1163

    Article  Google Scholar 

  • Hunt SM, Hamilton MA, Stewart PS (2005) A 3D model of antimicrobial action on biofilms. Water Sci Technol 52:143–148

    Google Scholar 

  • Jalbert E, Eberl HJ (2014) Numerical computation of sharp travelling waves of a degenerate diffusion-reaction equation arising in biofilm modelling. Commun Nonlinear Sci Numer Simul 19:2181–2190

    Article  MathSciNet  Google Scholar 

  • Janakiraman V, Englert D, Jayaraman A, Baskaran H (2009) Modeling growth and quorum sensing in biofilms grown in microfluidic chambers. Ann Biomed Eng 37:1206–1216

    Article  Google Scholar 

  • Jenkinson HF, Lappin-Scott HM (2001) Biofilms adhere to stay. TRENDS Microbiol 9(1):9–10

    Article  Google Scholar 

  • Kagawa Y, Tahata J, Kishida N, Matsumoto S, Picioreanu C, van Loosdrecht MCM, Tsuneda S (2015) Modeling the nutrient removal process in aerobic granular sludge system by coupling the reactor-and granule-scale models. Biotechnol Bioeng 112:53–64

    Article  Google Scholar 

  • Khassehkhan H, Efendiev MA, Eberl HJ (2009a) A degenerate diffusion-reaction model of an amensalistic biofilm control system: existence and simulation of solutions. Discrete Contin Dyn Syst B 12:371–388

    Article  MathSciNet  MATH  Google Scholar 

  • Khassehkhan H, Hillen T, Eberl HJ (2009b) A nonlinear master equation for a degenerate diffusion model of biofilm growth. In: International conference on computational science. Springer, pp 735–744

  • Kim MK, Ingremeau F, Zhao A, Bassler BL, Stone HA (2016) Local and global consequences of flow on bacterial quorum sensing. Nat Microbiol 1(15):005

    Google Scholar 

  • Kissel JC, McCarty PL, Street RL (1984) Numerical simulation of mixed-culture biofilm. J Environ Eng 110(2):393–411

    Article  Google Scholar 

  • Klapper I (2004) Effect of heterogeneous structure in mechanically unstressed biofilms on overall growth. Bull Math Biol 66(4):809–824

    Article  MathSciNet  MATH  Google Scholar 

  • Klapper I, Dockery J (2002) Finger formation in biofilm layers. SIAM J Appl Math 62(3):853–869

    Article  MathSciNet  MATH  Google Scholar 

  • Klapper I, Dockery J (2006) Role of cohesion in the material description of biofilms. Phys Rev E 74(3):031,902

    Article  MathSciNet  Google Scholar 

  • Klapper I, Dockery J (2010) Mathematical description of microbial biofilms. SIAM Rev 52(2):221–265

    Article  MathSciNet  MATH  Google Scholar 

  • Klapper I, Szomolay B (2011) An exclusion principle and the importance of mobility for a class of biofilm models. Bull Math Biol 73(9):2213–2230

    Article  MathSciNet  MATH  Google Scholar 

  • Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P (2002) Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol Bioeng 80(3):289–296

    Article  Google Scholar 

  • Klapper I, Gilbert P, Ayati BP, Dockery J, Stewart PS (2007) Senescence can explain microbial persistence. Microbiology 153:3623–3630

    Article  Google Scholar 

  • Kreft JU (2004) Biofilms promote altruism. Microbiol SGM 150(8):2751–2760

    Article  Google Scholar 

  • Kreft JU, Wimpenny JWT (2001a) Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol 43(6):135–142

    Google Scholar 

  • Kreft JU, Wimpenny JWT (2001b) Modeling biofilms with extra-cellular polymeric substances. In: Gilbert P, Allison D, Brading M, Verran J, Walker J (eds) Biofilm community interactions: chance or necessity?. BioLine, Cardiff, pp 191–199

    Google Scholar 

  • Kreft JU, Booth G, Wimpenny JWT (1998) Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiol SGM 144(12):3275–3287

    Article  Google Scholar 

  • Kreft JU, Booth G, Wimpenny JWT (1999) Applications of individual-based modelling in microbial ecology. In: Microbial biosystems: new frontiers (Proceedings of the eighth international symposium on microbial ecology). Atlantic Canada Society for Microbial Ecology, Halifax

  • Kreft JU, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM (2001) Individual-based modelling of biofilms. Microbiol SGM 147(11):2897–2912

    Article  Google Scholar 

  • Lackner S, Terada A, Smets BF (2008) Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: results of a modeling study. Water Res 42:1102–1112

    Article  Google Scholar 

  • Lardon LA, Merkey BV, Martins S, Dötsch A, Picioreanu C, Kreft JU, Smets BF (2011) iDynoMiCS: next-generation individual-based modelling of biofilms. Environ Microbiol 13(9):2416–2434

    Article  Google Scholar 

  • Laspidou CS, Rittmann BE (2002a) Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36(8):1983–1992

    Article  Google Scholar 

  • Laspidou CS, Rittmann BE (2002b) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36(11):2711–2720

    Article  Google Scholar 

  • Laspidou CS, Rittmann BE (2004a) Evaluating trends in biofilm density using the umcca model. Water Res 38(14):3362–3372

    Article  Google Scholar 

  • Laspidou CS, Rittmann BE (2004b) Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Res 38(14):3349–3361

    Article  Google Scholar 

  • Laspidou CS, Rittmann BE, Karamanos S (2005) Finite element modeling to expand the umcca model to describe biofilm mechanical behavior. Water Sci Technol 52(7):161–166

    Google Scholar 

  • Laspidou CS, Kungolos A, Samaras P (2010) Cellular-automata and individual-based approaches for the modeling of biofilm structures: pros and cons. Desalination 250(1):390–394

    Article  Google Scholar 

  • Laspidou CS, Liakopoulos A, Spiliotopoulos MG (2012) A 2D cellular automaton biofilm detachment algorithm. In: Cellular automata. Springer, Berlin, pp 415–424

  • Laspidou CS, Spyrou LA, Aravas N, Rittmann BE (2014) Material modeling of biofilm mechanical properties. Math Biosci 251:11–15

    Article  MathSciNet  MATH  Google Scholar 

  • Lee MW, Park JM (2007) One-dimensional mixed-culture biofilm model considering different space occupancies of particulate components. Water Res 41(19):4317–4328

    Article  Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56

    Article  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  Google Scholar 

  • Li C, Zhang Y, Yehuda C (2015) Individual based modeling of pseudomonas aeruginosa biofilm with three detachment mechanisms. RSC Adv 5:79001–79010

    Article  Google Scholar 

  • Li YH, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12:2519–2538

    Article  Google Scholar 

  • Lindley B, Wang Q, Zhang T (2012) Multicomponent hydrodynamic model for heterogeneous biofilms: two-dimensional numerical simulations of growth and interaction with flows. Phys Rev E 85(3):031908

    Article  Google Scholar 

  • Liu W, Røder HL, Madsen JS, Bjarnsholt T, Sørensen SJ, Burmølle M (2016) Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization. Front Microbiol 7(1366):1–8. doi:10.3389/fmicb.2016.01366

  • Marsh PD, Zaura E (2017) Dental biofilm: ecological interactions in health and disease. J Clin Periodontol 44(S18):S12–S22

  • Martin KJ, Picioreanu C, Nerenberg R (2013) Multidimensional modeling of biofilm development and fluid dynamics in a hydrogen-based, membrane biofilm reactor (MBfR). Water Res 47:4739–4751

    Article  Google Scholar 

  • Martin KJ, Picioreanu C, Nerenberg R (2015) Assessing microbial competition in a hydrogen-based membrane biofilm reactor (MBfR) using multidimensional modeling. Biotechnol Bioeng 112:1843–1853

    Article  Google Scholar 

  • Martins AMP, Picioreanu C, Heijnen JJ, van Loosdrecht MCM (2004) Three-dimensional dual-morphotype species modeling of activated sludge flocs. Environ Sci Technol 38:5632–5641

    Article  Google Scholar 

  • Matsumoto S, Terada A, Aoi Y, Tsuneda S, Alpkvist E, Picioreanu C, Van Loosdrecht MCM (2007) Experimental and simulation analysis of community structure of nitrifying bacteria in a membrane-aerated biofilm. Water Sci Technol 55:283–290

    Article  Google Scholar 

  • Matsumoto S, Katoku M, Saeki G, Terada A, Aoi Y, Tsuneda S, Picioreanu C, Van Loosdrecht MCM (2010) Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses. Environ Microbiol 12:192–206

    Article  Google Scholar 

  • Matsushita M, Fujikawa H (1990) Diffusion-limited growth in bacterial colony formation. Physica A 168(1):498–506

    Article  Google Scholar 

  • Mattei MR (2014) Mathematical modelling of multispecies biofilms for wastewater treatment. PhD thesis, Paris Est

  • Mattei MR, D’Acunto B, Esposito G, Frunzo L, Pirozzi F (2015a) Mathematical modeling of competition and coexistence of sulfate-reducing bacteria, acetogens, and methanogens in multispecies biofilms. Desalination Water Treat 55:740–748

    Article  Google Scholar 

  • Mattei MR, Frunzo L, D’Acunto B, Esposito G, Pirozzi F (2015b) Modelling microbial population dynamics in multispecies biofilms including anammox bacteria. Ecol Model 304:44–58

    Article  Google Scholar 

  • Merkey BV, Chopp DL (2012) The performance of a microbial fuel cell depends strongly on anode geometry: a multidimensional modeling study. Bull Math Biol 74(4):834–857

    Article  MathSciNet  MATH  Google Scholar 

  • Merkey BV, Chopp DL (2014) Modeling the impact of interspecies competition on performance of a microbial fuel cell. Bull Math Biol 76(6):1429–1453

    Article  MathSciNet  MATH  Google Scholar 

  • Merkey BV, Rittmann BE, Chopp DL (2009) Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms. J Theor Biol 259:670–683

    Article  MathSciNet  Google Scholar 

  • Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17(2):73–87

    Article  Google Scholar 

  • Morgenroth E (2003) Detachment - an often over looked phenomenon in biofilm research and modeling. In: Wilderer P, Bishop P, Wuertz S (eds) Biofilms in Wastewater treatment. IWA Publishing, London, pp 264–290

    Google Scholar 

  • Morgenroth E, Van Loosdrecht MCM, Wanner O (2000) Biofilm models for the practitioner. Water Sci Technol 41(4–5):509–512

    Google Scholar 

  • Muhammad N, Eberl HJ (2011) Model parameter uncertainties in a dual-species biofilm competition model affect ecological output parameters much stronger than morphological ones. Math Biosci 233:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Müller J, Kuttler C, Hense BA, Rothballer M, Hartmann A (2006) Cell-cell communication by quorum sensing and dimension-reduction. J Math Biol 53:672–702

    Article  MathSciNet  MATH  Google Scholar 

  • Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14

    Article  Google Scholar 

  • Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14:589–600

    Article  Google Scholar 

  • Nicolella C, Van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80(1):1–33

    Article  Google Scholar 

  • Noguera DR, Okabe S, Picioreanu C (1999a) Biofilm modeling: present status and future directions. Water Sci Technol 39(7):273–278

    Google Scholar 

  • Noguera DR, Pizarfo G, Stahl DA, Rittmann BE (1999b) Simulation of multispecies biofilm development in three dimensions. Water Sci Technol 39(7):123–130

    Google Scholar 

  • Ortiz-Martínez VM, Salar-García MJ, De Los Ríos AP, Hernández-Fernández FJ, Egea JA, Lozano LJ (2015) Developments in microbial fuel cell modeling. Chem Eng J 271:50–60

    Article  Google Scholar 

  • Paul E, Ochoa JC, Pechaud Y, Liu Y, Liné A (2012) Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Res 46(17):5499–5508

    Article  Google Scholar 

  • Pérez J, Picioreanu C, van Loosdrecht MCM (2005) Modeling biofilm and floc diffusion processes based on analytical solution of reaction-diffusion equations. Water Res 39(7):1311–1323

    Article  Google Scholar 

  • Pérez-Velázquez J, Gölgeli M, García-Contreras R (2016) Mathematical modelling of bacterial quorum sensing: a review. Bull Math Biol 78:1585–1639

    Article  MathSciNet  MATH  Google Scholar 

  • Picioreanu C, van Loosdrecht M (2003) Use of mathematical modelling to study biofilm development and morphology. In: Moran AP, Stoodley P, Mahony T, Lens P, OFlaherty V (eds) Biofilms in medicine, industry and environmental biotechnology: charcateristics, analysis and control. IWA Publishing, London, pp 413–437

    Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998a) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57(6):718–731

    Article  Google Scholar 

  • Picioreanu C, Van Loosdrecht MCM, Heijnen JJ (1998b) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58(1):101–116

    Article  Google Scholar 

  • Picioreanu C, Van Loosdrecht MCM, Heijnen JJ (1999) Discrete-differential modelling of biofilm structure. Water Sci Technol 39(7):115–122

    Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000a) Modelling and predicting biofilm structure. In: Symposia-society for general microbiology. Cambridge University Press, 1999, Cambridge, pp 129–166

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000b) A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol Bioeng 68(4):355–369

    Article  Google Scholar 

  • Picioreanu C, Van Loosdrecht MCM, Heijnen JJ (2000c) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioengg 69(5):504–515

    Article  Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72(2):205–218

    Article  Google Scholar 

  • Picioreanu C, Kreft JU, van Loosdrecht MCM (2004a) Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70(5):3024–3040

    Article  Google Scholar 

  • Picioreanu C, Xavier JB, van Loosdrecht MCM (2004b) Advances in mathematical modeling of biofilm structure. Biofilms 1(04):337–349

    Article  Google Scholar 

  • Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K (2007a) A computational model for biofilm-based microbial fuel cells. Water Res 41(13):2921–2940

    Article  Google Scholar 

  • Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K (2007b) A computational model for biofilm-based microbial fuel cells. Water Res 41:2921–2940

    Article  Google Scholar 

  • Picioreanu C, Kreft JU, Klausen M, Haagensen JAJ, Tolker-Nielsen T, Molin S (2007c) Microbial motility involvement in biofilm structure formation-a 3D modelling study. Water Sci Technol 55(8–9):337–343

    Article  Google Scholar 

  • Picioreanu C, Katuri KP, Head IM, van Loosdrecht MCM, Scott K (2008) Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci Technol 57:965–971

    Article  Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Curtis TP, Scott K (2010) Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry 78:8–24

    Article  Google Scholar 

  • Pizarro G, Griffeath D, Noguera DR (2001) Quantitative cellular automaton model for biofilms. J Environ Eng 127(9):782–789

    Article  Google Scholar 

  • Pizarro GE, Garcia C, Moreno R, Sepulveda ME (2004) Two-dimensional cellular automaton model for mixed-culture biofilm. Water Sci Technol 49(11–12):193–198

    Google Scholar 

  • Pritchett LA, Dockery JD (2001) Steady state solutions of a one-dimensional biofilm model. Math Comput Model 33(1):255–263

    Article  MATH  Google Scholar 

  • Rahman KA, Sudarsan R, Eberl HJ (2015) A mixed-culture biofilm model with cross-diffusion. Bull Math Biol 77:2086–2124

    Article  MathSciNet  MATH  Google Scholar 

  • Rauch W, Vanhooren H, Vanrolleghem PA (1999) A simplified mixed-culture biofilm model. Water Res 33(9):2148–2162

    Article  Google Scholar 

  • Reichert P (1994) AQUASIM—a tool for simulation and data analysis of aquatic systems. Water Sci Technol 30(2):21–30

    Google Scholar 

  • Reichert P, Wanner O (1997) Movement of solids in biofilms: significance of liquid phase transport. Water Sci Technol 36(1):321–328

    Google Scholar 

  • Rittman BE (1982) The effect of shear stress on biofilm loss rate. Biotechnol Bioeng 24(2):501–506

    Article  Google Scholar 

  • Rittmann BE, Brunner CW (1984) The nonsteady-state-biofilm process for advanced organics removal. J Water Pollut Control Fed 56:874–880

    Google Scholar 

  • Rittmann BE, Dovantzis K (1983) Dual limitation of biofilm kinetics. Water Res 17(12):1727–1734

    Article  Google Scholar 

  • Rittmann BE, Manem JA (1992) Development and experimental evaluation of a steady-state, multispecies biofilm model. Biotechnol Bioeng 39(9):914–922

    Article  Google Scholar 

  • Rittmann BE, McCarty PL (1980a) Evaluation of steady-state-biofilm kinetics. Biotechnol Bioeng 22(11):2359–2373

    Article  Google Scholar 

  • Rittmann BE, McCarty PL (1980b) Model of steady-state-biofilm kinetics. Biotechnol Bioeng 22(11):2343–2357

    Article  Google Scholar 

  • Rittmann BE, McCarty PL (1981) Substrate flux into biofilms of any thickness. J Environ Eng Div 107(4):831–849

    Google Scholar 

  • Rittmann BE, Stilwell D, Ohashi A (2002) The transient-state, multiple-species biofilm model for biofiltration processes. Water Res 36(9):2342–2356

    Article  Google Scholar 

  • Roberts ME, Stewart PS (2004) Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation. Antimicrobial Agents Chemother 48:48–52

    Article  Google Scholar 

  • Roberts ME, Stewart PS (2005) Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151:75–80

    Article  Google Scholar 

  • Sanderson SS, Stewart PS (1997) Evidence of bacterial adaptation to monochloramine in pseudomonas aeruginosa biofilms and evaluation of biocide action model. Biotechnol Bioeng 56:201–209

    Article  Google Scholar 

  • Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR (2006) The impact of quorum sensing and swarming motility on pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62(5):1264–1277

    Article  Google Scholar 

  • Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104

    Article  Google Scholar 

  • Sonner S, Efendiev MA, Eberl HJ (2011) On the well-posedness of a mathematical model of quorum-sensing in patchy biofilm communities. Math Methods Appl Sci 34:1667–1684

    Article  MathSciNet  MATH  Google Scholar 

  • Sonner S, Efendiev MA, Eberl HJ (2015) On the well-posedness of mathematical models for multicomponent biofilms. Math Method Appl Sci 38(17):3753–3775

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart PS (1993) A model of biofilm detachment. Biotechnol Bioeng 41(1):111–117

    Article  Google Scholar 

  • Stewart PS (1994) Biofilm accumulation model that predicts antibiotic resistance of pseudomonas aeruginosa biofilms. Antimicrobial Agents Chemother 38:1052–1058

    Article  Google Scholar 

  • Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185(5):1485–1491

    Article  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  Google Scholar 

  • Stewart PS, Hamilton MA, Goldstein BR, Schneider BT (1996) Modeling biocide action against biofilms. Biotechnol Bioeng 49:445–455

    Article  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209

    Article  Google Scholar 

  • Storck T, Picioreanu C, Virdis B, Batstone DJ (2014) Variable cell morphology approach for individual-based modeling of microbial communities. Biophys J 106:2037–2048

    Article  Google Scholar 

  • Stotsky JA, Hammond JF, Pavlovsky L, Stewart EJ, Younger JG, Solomon MJ, Bortz DM (2015) Variable viscosity and density biofilm simulations using an immersed boundary method, part ii: experimental validation and the heterogenous rheology-IBM. arXiv preprint arXiv:1504.07326

  • Sudarsan R, Ghosh S, Stockie JM, Eberl HJ (2015) Simulating biofilm deformation and detachment with the immersed boundary method. arXiv preprint arXiv:1501.07221

  • Szomolay B (2008) Analysis of a moving boundary value problem arising in biofilm modelling. Math Meth Appl Sci 31(15):1835–1859

    Article  MathSciNet  MATH  Google Scholar 

  • Szomolay B, Cogan NG (2015) Modelling mechanical and chemical treatment of biofilms with two phenotypic resistance mechanisms. Environ Microbiol 17:1870–1883

    Article  Google Scholar 

  • Szomolay B, Klapper I, Dockery J, Stewart PS (2005) Adaptive responses to antimicrobial agents in biofilms. Environ Microbiol 7:1186–1191

    Article  Google Scholar 

  • Szomolay B, Klapper I, Dindos M (2010) Analysis of adaptive response to dosing protocols for biofilm control. SIAM J Appl Math 70:3175–3202

    Article  MathSciNet  MATH  Google Scholar 

  • Taherzadeh D, Picioreanu C, Horn H (2012) Mass transfer enhancement in moving biofilm structures. Biophys J 102:1483–1492

    Article  Google Scholar 

  • Tang Y, Liu H (2017) Modeling multidimensional and multispecies biofilms in porous media. Biotechnol Bioeng 114(8):1679–1687

  • Tang Y, Valocchi AJ (2013) An improved cellular automaton method to model multispecies biofilms. Water Res 47(15):5729–5742

    Article  Google Scholar 

  • Tao YG, Slater GW (2011) A simulation model of biofilms with autonomous cells: 2-explicit representation of the extracellular polymeric substance. Macromol Theory Simul 20:571–583

    Article  Google Scholar 

  • Tatek YB, Slater GW (2006) A simulation model of biofilms with autonomous cells: I. Analysis of a two-dimensional version. Physica A 362:382–402

    Article  Google Scholar 

  • Tierra G, Pavissich JP, Nerenberg R, Xu Z, Alber MS (2015) Multicomponent model of deformation and detachment of a biofilm under fluid flow. J R Soc Interface 12(20150):045

    Google Scholar 

  • Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40(2):75–84

    Google Scholar 

  • Tolman S, Meakin P, Matsushita M (1989) Cluster-size distribution in the incremental growth of DLA clusters. J Phys Soc Jpn 58(8):2721–2726

    Article  Google Scholar 

  • Towler BW, Cunningham A, Stoodley P, McKittrick L (2007) A model of fluid-biofilm interaction using a burger material law. Biotechnol Bioeng 96:259–271

    Article  Google Scholar 

  • Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N (2016) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80:7–12

    Google Scholar 

  • Tsuno H, Hidaka T, Nishimura F (2002) A simple biofilm model of bacterial competition for attached surface. Water Res 36(4):996–1006

    Article  Google Scholar 

  • Van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ (1995) Biofilm structures. Water Sci Technol 32(8):35–43

    Google Scholar 

  • Van Loosdrecht MCM, Heijnen JJ, Eberl H, Kreft J, Picioreanu C (2002) Mathematical modelling of biofilm structures. Antonie van Leeuwenhoek 81(1–4):245–256

    Article  Google Scholar 

  • Vannecke TPW, Bernet N, Winkler MKH, Santa-Catalina G, Steyer JP, Volcke EIP (2016) Influence of process dynamics on the microbial diversity in a nitrifying biofilm reactor: correlation analysis and simulation study. Biotechnol Bioeng 113:1962–1974

    Article  Google Scholar 

  • Vaughan BL Jr, Smith BG, Chopp DL (2010) The influence of fluid flow on modeling quorum sensing in bacterial biofilms. Bull Math Biol 72:1143–1165

    Article  MATH  Google Scholar 

  • von Bodman SB, Willey JM, Diggle SP (2008) Cell–cell communication in bacteria: united we stand. J Bacteriol 190(13):4377–4391

    Article  Google Scholar 

  • Vo GD, Brindle E, Heys J (2010) An experimentally validated immersed boundary model of fluid-biofilm interaction. Water Sci Technol 61(12):3033–3040

    Article  Google Scholar 

  • Volcke EIP, Picioreanu C, De Baets B, van Loosdrecht MCM (2012) The granule size distribution in an anammox-based granular sludge reactor affects the conversion implications for modeling. Biotechnol Bioeng 109:1629–1636

    Article  Google Scholar 

  • Wang Q, Zhang T (2010) Review of mathematical models for biofilms. Solid State Commun 150(21):1009–1022

    Article  Google Scholar 

  • Wang Q, Zhang T (2012) Kinetic theories for biofilms. Discrete Cont Dyn Syst B 17:1027–1059

    Article  MathSciNet  MATH  Google Scholar 

  • Wang R, Terada A, Lackner S, Smets BF, Henze M, Xia S, Zhao J (2009) Nitritation performance and biofilm development of co-and counter-diffusion biofilm reactors: modeling and experimental comparison. Water Res 43:2699–2709

    Article  Google Scholar 

  • Wanner O, Gujer W (1984) Competition in biofilms. Water Sci Technol 17(2–3):27–44

    Google Scholar 

  • Wanner O, Gujer W (1986) A multispecies biofilm model. Biotechnol Bioeng 28(3):314–328

    Article  Google Scholar 

  • Wanner O, Morgenroth E (2004) Biofilm modeling with aquasim. Water Sci Technol 49(11–12):137–144

    Google Scholar 

  • Wanner O, Reichert P (1996) Mathematical modeling of mixed-culture biofilms. Biotechnol Bioeng 49(2):172–184

    Article  Google Scholar 

  • Wanner O, Eberl H, Morgenroth E, Noguera D, Picioreanu C, Rittmann B, van Loosdrecht M (2006) Mathematical modeling of biofilms. IWA Publishing, London

    Google Scholar 

  • Ward JP, King JR (2012) Thin-film modelling of biofilm growth and quorum sensing. J Eng Math 73:71–92

    Article  MathSciNet  Google Scholar 

  • Ward JP, King JR, Koerber AJ, Williams P, Croft JM, Sockett RE (2001) Mathematical modelling of quorum sensing in bacteria. Math Med Biol 18:263–292

    Article  MATH  Google Scholar 

  • Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2003) Early development and quorum sensing in bacterial biofilms. J Math Biol 47:23–55

    Article  MathSciNet  MATH  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    Article  Google Scholar 

  • Williamson K, McCarty P (1976) A model of substrate utilization by bacterial films. J Water Pollut Control Fed 48:9–24

    Google Scholar 

  • Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22(1):1–16

    Article  Google Scholar 

  • Winstanley HF, Chapwanya M, McGuinness MJ, Fowler AC (2010) A polymer–solvent model of biofilm growth. In: Proc R Soc A, p. rspa20100327

  • Winstanley HF, Chapwanya M, Fowler AC, O’Brien SBG (2015) A 2D channel-clogging biofilm model. J Math Biol 71:647–668

    Article  MathSciNet  MATH  Google Scholar 

  • Witten TA Jr, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47(19):1400

    Article  Google Scholar 

  • Wolf G, Picioreanu C, van Loosdrecht MCM (2007) Kinetic modeling of phototrophic biofilms: the phobia model. Biotechnol Bioeng 97:1064–1079

    Article  Google Scholar 

  • Wood BD, Whitaker S (1998) Diffusion and reaction in biofilms. Chem Eng Sci 53(3):397–425

    Article  Google Scholar 

  • Wood BD, Whitaker S (1999) Cellular growth in biofilms. Biotechnol Bioeng 64(6):656–670

    Article  Google Scholar 

  • Xavier JB, Picioreanu C, Van Loosdrecht MCM (2004a) Assessment of three-dimensional biofilm models through direct comparison with confocal microscopy imaging. Water Sci Technol 49(11–12):177–185

    Google Scholar 

  • Xavier JB, Picioreanu C, Van Loosdrecht MCM (2004b) A modelling study of the activity and structure of biofilms in biological reactors. Biofilms 1(04):377–391

    Article  Google Scholar 

  • Xavier JB, Picioreanu C, van Loosdrecht MCM (2005a) A general description of detachment for multidimensional modelling of biofilms. Biotechnol Bioeng 91(6):651–669

    Article  Google Scholar 

  • Xavier JB, Picioreanu C, Van Loosdrecht MCM (2005b) A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol 7(8):1085–1103

    Article  Google Scholar 

  • Xavier JB, De Kreuk MK, Picioreanu C, van Loosdrecht MCM (2007) Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge. Environ Sci Technol 41(18):6410–6417

    Article  Google Scholar 

  • Xu Z, Meakin P, Tartakovsky A, Scheibe TD (2011) Dissipative-particle-dynamics model of biofilm growth. Phys Rev E 83(066):702

    Google Scholar 

  • Zhang T (2012) Modeling of biocide action against biofilm. Bull Math Biol 74:1427–1447

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang T, Cogan NG, Wang Q (2008a) Phase field models for biofilms. I. Theory and one-dimensional simulations. SIAM J Appl Math 69(3):641–669

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang T, Cogan NG, Wang Q (2008b) Phase field models for biofilms. II. 2-D numerical simulations of biofilm-flow interaction. Commun Comput Phys 4(1):72–101

    MATH  Google Scholar 

  • Zhao J, Wang Q (2017) Three-dimensional numerical simulations of biofilm dynamics with quorum sensing in a flow cell. Bull Math Biol 79:884–919

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao J, Seeluangsawat P, Wang Q (2016a) Modeling antimicrobial tolerance and treatment of heterogeneous biofilms. Math Biosci 282:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao J, Shen Y, Haapasalo M, Wang Z, Wang Q (2016b) A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms. J Theor Biol 392:83–98

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the European Commission for providing financial support through the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments) under the Grant agreement FPA n2010-0009. Two of the authors (M. R. Mattei and L. Frunzo) would also like to acknowledge Progetto Giovani GNFM 2016 Comportamenti emergenti ed auto-organizzazione in sistemi iperbolici di reazione-diffusione in ambito biologico ed ecologico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Frunzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattei, M.R., Frunzo, L., D’Acunto, B. et al. Continuum and discrete approach in modeling biofilm development and structure: a review. J. Math. Biol. 76, 945–1003 (2018). https://doi.org/10.1007/s00285-017-1165-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1165-y

Keywords

Mathematics Subject Classification

Navigation