Skip to main content
Log in

Sfl1p acts as an activator of the HSP30 gene in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In the yeast, environmental challenges are known to induce both specific and general stress response. The HSP30 gene is strongly induced when cells are exposed to various stresses but this activation is largely independent of the major stress-related transcription factor Hsf1p and partly independent from Msn2p/Msn4p. In order to identify new potential regulators of HSP30 we isolated insertion mutants affected in HSP30 expression. We identified SFL1 gene encoding a protein previously shown to repress several genes. We show that Sfl1 is involved in the transcriptional activation of HSP30. Mutation of sfl1 reduces HSP30-lacZ expression under both basal and stress-induced conditions. We also show, using site-directed mutagenesis, that HSL motifs (Heat-Shock-Like putative DNA binding sequence) located in HSP30 promoter are required for HSP30 activation. Finally, a genome-wide analysis of the effects of SFL1 deletion on gene expression revealed that Sfl1p controls the expression of a small number of genes, with some being activated by the protein and others repressed. As a whole our data show that Sfl1p is a key component of the transcriptional control of the stress responsive gene HSP30. Moreover, we show that Sfl1, which was previously described as being a transcriptional repressor, can also act as an activator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103

    Article  PubMed  CAS  Google Scholar 

  • Boles E, de Jong-Gubbels P, Pronk JT (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180:2875–2882

    PubMed  CAS  Google Scholar 

  • Boorstein WR, Craig EA (1990) Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae. Mol Cell Biol 10:3262–3267

    PubMed  CAS  Google Scholar 

  • Burns N et al (1994) Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev 8:1087–1105

    Article  PubMed  CAS  Google Scholar 

  • Conlan RS, Tzamarias D (2001) Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • Conlan RS, Gounalaki N, Hatzis P, Tzamarias D (1999) The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator. J Biol Chem 274:205–210

    Article  PubMed  CAS  Google Scholar 

  • Demasi APD, Pereira GAG, Netto LES (2006) Yeast oxidative stress response. FEBS J 273:805–816

    Article  PubMed  CAS  Google Scholar 

  • Fujita A, Kikuchi Y, Kuhara S, Misumi Y, Matsumoto S, Kobayashi H (1989) Domains of the SFL1 protein of yeasts are homologous to Myc oncoproteins or yeast heat-shock transcription factor. Gene 85:321–328

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (1998) Transformation of yeast by the lithium acetate/single-stranded carrier DNA/PEG method. In: Brown AJP, Tuite MF (eds) Methods in microbiology. Academic, New York

    Google Scholar 

  • Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101:181–191

    PubMed  CAS  Google Scholar 

  • Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  PubMed  Google Scholar 

  • Hahn JS, Thiele DJ (2004) Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279:5169–5176

    Article  PubMed  CAS  Google Scholar 

  • Hahn JS, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24:5249–5256

    Article  PubMed  CAS  Google Scholar 

  • Hatzixanthis K et al (2003) Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast 20:575–585

    Article  PubMed  CAS  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Kim TS, Lee SB, Kang HS (2004) Glucose repression of STA1 expression is mediated by the Nrg1 and Sfl1 repressors and the Srb8-11 complex. Mol Cell Biol 24:7695–7706

    Article  PubMed  CAS  Google Scholar 

  • Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:665–664

    Google Scholar 

  • Lee J et al (1999) Yap1 and Skn7 control two specialized oxidative stress regulons in yeast. J Biol Chem 274:16040–16046

    Article  PubMed  CAS  Google Scholar 

  • Marchler G, Shüller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003

    PubMed  CAS  Google Scholar 

  • Martinez-Pastor M-T, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    PubMed  CAS  Google Scholar 

  • Pan X, Heitman J (2002) Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol 22:3981–3993

    Article  PubMed  CAS  Google Scholar 

  • Panaretou B, Piper PW (1992) The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur J Biochem 206:635–640

    Article  PubMed  CAS  Google Scholar 

  • Piña B, Fernandez-Larrea J, Garcia-Reyero N, Idrissi FZ (2003) The different (sur)faces of Rap1p. Mol Genet Genomics 268:791–798

    PubMed  Google Scholar 

  • Piper PW et al (1994) Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140:3031–3038

    PubMed  CAS  Google Scholar 

  • Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) HSP30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H+-ATPase. Cell Stress Chaperones 2:12–24

    Article  PubMed  CAS  Google Scholar 

  • Regnacq M, Boucherie H (1993) Isolation and sequence of HSP30, a yeast heat-shock gene coding for a hydrophobic membrane protein. Curr Genet 23:435–442

    Article  PubMed  CAS  Google Scholar 

  • Regnacq M, Alimardani P, El Moudni B, Berges T (2001) SUT1p interaction with Cyc8p(Ssn6p) relieves hypoxic genes from Cyc8p-Tup1p repression in Saccharomyces cerevisiae. Mol Microbiol 40:1085–1096

    Article  PubMed  CAS  Google Scholar 

  • Rep M et al (1999) Osmotic Stress-Induced Gene Expression in Saccharomyces cerevisiae Requires Msn1p and the novel Nuclear Factor Hot1p. Mol Cell Biol 19:5474–5485

    PubMed  CAS  Google Scholar 

  • Riley J et al (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res 18:2887–2890

    Article  PubMed  CAS  Google Scholar 

  • Riou C, Nicaud JM, Barre P, Gaillardin C (1997) Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation. Yeast 13:903–915

    Article  PubMed  CAS  Google Scholar 

  • Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95:13783–13787

    Article  PubMed  CAS  Google Scholar 

  • Rose M, Botstein D (1983) Construction and use of gene fusions to lacZ (beta-galactosidase) that are expressed in yeast. Methods Enzymol 101:167–180

    Article  PubMed  CAS  Google Scholar 

  • Rossignol T, Postaire O, Storai J, Blondin B (2006) Analysis of the genomic response of a wine yeast to rehydration and inoculation. Appl Microbiol Biotechnol 71:699–712

    Article  PubMed  CAS  Google Scholar 

  • Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269

    Article  PubMed  CAS  Google Scholar 

  • Schüller C et al (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15:706–720

    Article  PubMed  CAS  Google Scholar 

  • Seymour IJ, Piper P (1999) Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145:231–239

    Article  PubMed  CAS  Google Scholar 

  • Song W, Carlson M (1998) Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1. EMBO J 17:5757–5765

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65:363–366

    Article  PubMed  CAS  Google Scholar 

  • Varela JC, van Beekvelt C, Planta RJ, Mager WH (1992) Osmostress induced changes in yeast gene expression. Mol Microbiol 6:2183–2190

    Article  PubMed  CAS  Google Scholar 

  • Wettenhall JM, Smyth GK (2004) limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20:3705–3706

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Ansanay Galeote.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansanay Galeote, V., Alexandre, H., Bach, B. et al. Sfl1p acts as an activator of the HSP30 gene in Saccharomyces cerevisiae . Curr Genet 52, 55–63 (2007). https://doi.org/10.1007/s00294-007-0136-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0136-z

Keywords

Navigation