Skip to main content
Log in

Overexpression of SNG1 causes 6-azauracil resistance in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The mechanism of action of 6AU, a growth inhibitor for many microorganisms causing depletion of intracellular nucleotide pools of GTP and UTP, is not well understood. To gain insight into the mechanisms leading to 6AU resistance, and in an attempt to uncover novel genes required for this resistance, we undertook a high-copy-number suppressor screening to identify genes whose overexpression could repair the 6AUS growth defect caused by rpb1 mutations in Saccharomyces cerevisiae. We have identified SNG1 as a multicopy suppressor of the 6AUS growth defect caused by the S. cerevisiae rpb1 mutant. The mechanism by which Sng1 causes 6AU resistance is independent of the transcriptional elongation and of the nucleotide-pool regulation through Imd2 and Ura2, as well as of the Ssm1-mediated 6AU detoxification. This resistance to 6AU is not extended to other uracil analogues, such as 5-fluorouracil, 5FU. In addition, our results suggest that 6AU enters S. cerevisiae cells through the uracil permease Fur4. Our results demonstrate that Sng1 is localised in the plasma membrane and evidence SNG1 and FUR4 genes as determinants of resistance and susceptibility to this inhibitory compound, respectively. Taken together, these results show new mechanisms involved in the resistance and susceptibility to 6AU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Archambault J, Drebot MA, Stone JC, Friesen JD (1992a) Isolation and phenotypic analysis of conditional-lethal, linker-insertion mutations in the gene encoding the largest subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Gen Genet 232:408–414

    CAS  PubMed  Google Scholar 

  • Archambault J, Lacroute F, Ruet A, Friesen JD (1992b) Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol Cell Biol 12:4142–4152

    CAS  PubMed  Google Scholar 

  • Blackmore CG, McNaughton PA, van Veen HW (2001) Multidrug transporters in prokaryotic and eukaryotic cells: physiological functions and transport mechanisms. Mol Membr Biol 18:97–103

    Article  CAS  PubMed  Google Scholar 

  • Bonneaud N, Ozier-Kalogeropoulos O, Li GY, Labouesse M, Minvielle-Sebastia LLacroute F (1991) A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615

    Article  CAS  PubMed  Google Scholar 

  • Broco N, Tenreiro S, Viegas CA, Sa-Correia I (1999) FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on pdr3 transcriptional regulator. Yeast 15:1595–1608

    Article  CAS  PubMed  Google Scholar 

  • De Hertogh B, Carvajal E, Talla E, Dujon B, Baret P, Goffeau A (2002) Phylogenetic classification of transporters and other membrane proteins from Saccharomyces cerevisiae. Funct Integr Genomics 2:154–170

    Article  PubMed  Google Scholar 

  • Delaveau T, Delahodde A, Carvajal E, Subik J, Jacq C (1994) PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol Gen Genet 244:501–511

    Article  CAS  PubMed  Google Scholar 

  • Desmoucelles C, Pinson B, Saint-Marc C, Daignan-Fornier B (2002) Screening the yeast “disruptome” for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid. J Biol Chem 277:27036–27044

    Article  CAS  PubMed  Google Scholar 

  • Driessen AJ, Rosen BP, Konings WN (2000) Diversity of transport mechanisms: common structural principles. Trends Biochem Sci 25:397–401

    Article  CAS  PubMed  Google Scholar 

  • Exinger F, Lacroute F (1992) 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr Genet 22:9–11

    Article  CAS  PubMed  Google Scholar 

  • Froissard M, Belgareh-Touze N, Buisson N, Desimone M, Frommer WB, Haguenauer-Tsapis R (2006) Heterologous expression of a plant uracil transporter in yeast: improvement of plasma membrane targeting in mutants of the Rsp5p ubiquitin protein ligase. Biotechnol J 1:308–320

    Article  CAS  PubMed  Google Scholar 

  • Gaillard H, Tous C, Botet J, Gonzalez-Aguilera C, Quintero MJ, Viladevall L, Garcia-Rubio ML, Rodriguez-Gil A, Marin A, Arino J, Revuelta JL, Chavez S, Aguilera A (2009) Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-not in transcription-coupled repair. PLoS Genet 5:e1000364

    Article  PubMed  Google Scholar 

  • Galan JM, Moreau V, Andre B, Volland C, Haguenauer-Tsapis R (1996) Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem 271:10946–10952

    Article  CAS  PubMed  Google Scholar 

  • Gbelska Y, Krijger JJ, Breunig KD (2006) Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res 6:345–355

    Article  CAS  PubMed  Google Scholar 

  • Grey M, Pich CT, Haase E, Brendel M (1995) SNG1—a new gene involved in nitrosoguanidine resistance in Saccharomyces cerevisiae. Mutat Res 346:207–214

    Article  CAS  PubMed  Google Scholar 

  • Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62:465–503

    CAS  PubMed  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  CAS  PubMed  Google Scholar 

  • Hikkel I, Lucau-Danila A, Delaveau T, Marc P, Devaux F, Jacq C (2003) A general strategy to uncover transcription factor properties identifies a new regulator of drug resistance in yeast. J Biol Chem 278:11427–11432

    Article  CAS  PubMed  Google Scholar 

  • Hubert JC, Guyonvarch A, Kammerer B, Exinger F, Liljelund P, Lacroute F (1983) Complete sequence of a eukaryotic regulatory gene. EMBO J 2:2071–2073

    CAS  PubMed  Google Scholar 

  • Jund R, Lacroute F (1970) Genetic and physiological aspects of resistance to 5-fluoropyrimidines in Saccharomyces cerevisiae. J Bacteriol 102:607–615

    CAS  PubMed  Google Scholar 

  • Jund R, Chevallier MR, Lacroute F (1977) Uracil transport in Saccharomyces cerevisiae. J Membr Biol 36:233–251

    Article  CAS  PubMed  Google Scholar 

  • Kim TK, Lagrange T, Wang YH, Griffith JD, Reinberg DEbright RH (1997) Trajectory of DNA in the RNA polymerase II transcription preinitiation complex. Proc Natl Acad Sci USA 94:12268–12273

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Ishiguro A, Ishihama A (1997) RNA polymerase II subunits 2, 3, and 11 form a core subassembly with DNA binding activity. J Biol Chem 272:25851–25855

    Article  CAS  PubMed  Google Scholar 

  • Kwapisz M, Wery M, Despres D, Ghavi-Helm Y, Soutourina J, Thuriaux P, Lacroute F (2008) Mutations of RNA polymerase II activate key genes of the nucleoside triphosphate biosynthetic pathways. EMBO J 27:2411–2421

    Article  CAS  PubMed  Google Scholar 

  • Lage H (2003) ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents 22:188–199

    Article  CAS  PubMed  Google Scholar 

  • Le Crom S, Devaux F, Marc P, Zhang X, Moye-Rowley WS, Jacq C (2002) New insights into the pleiotropic drug resistance network from genome-wide characterization of the YRR1 transcription factor regulation system. Mol Cell Biol 22:2642–2649

    Article  CAS  PubMed  Google Scholar 

  • Loison G, Sosson R, Lacroute F (1980) Constitutive mutants for orotidine 5 phosphate decarboxylase and dihydroorotic acid dehydrogenase in Saccaromyces cerevisiae. Curr Genet 2:39–44

    Article  CAS  Google Scholar 

  • Lucau-Danila A, Delaveau T, Lelandais G, Devaux F, Jacq C (2003) Competitive promoter occupancy by two yeast paralogous transcription factors controlling the multidrug resistance phenomenon. J Biol Chem 278:52641–52650

    Article  CAS  PubMed  Google Scholar 

  • Malagon F, Tong AH, Shafer BK, Strathern JN (2004) Genetic interactions of DST1 in Saccharomyces cerevisiae suggest a role of TFIIS in the initiation-elongation transition. Genetics 166:1215–1227

    Article  CAS  PubMed  Google Scholar 

  • Malagon F, Kireeva ML, Shafer BK, Lubkowska L, Kashlev M, Strathern JN (2006) Mutations in the Saccharomyces cerevisiae RPB1 Gene Conferring Hypersensitivity to 6-Azauracil. Genetics 172:2201–2209

    Article  CAS  PubMed  Google Scholar 

  • Mohana Rao JK, Argos P (1986) A conformational preference parameter to predict helices in integral membrane proteins. Biochim Biophys Acta 869:197–214

    CAS  PubMed  Google Scholar 

  • Moye-Rowley WS (2005) Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae. Gene 354:15–21

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Sekimizu K (2002) SDT1/SSM1, a multicopy suppressor of S-II null mutant, encodes a novel pyrimidine 5’-nucleotidase. J Biol Chem 277:22103–22106

    Article  CAS  PubMed  Google Scholar 

  • Naresh A, Saini S, Singh J (2003) Identification of Uhp1, a ubiquitinated histone-like protein, as a target/mediator of Rhp6 in mating-type silencing in fission yeast. J Biol Chem 278:9185–9194

    Article  CAS  PubMed  Google Scholar 

  • Nonet M, Scafe C, Sexton J, Young R (1987) Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol Cell Biol 7:1602–1611

    CAS  PubMed  Google Scholar 

  • Onda M, Ota K, Chiba T, Sakaki Y, Ito T (2004) Analysis of gene network regulating yeast multidrug resistance by artificial activation of transcription factors: involvement of Pdr3 in salt tolerance. Gene 332:51–59

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Gaur NA, Gaur M, Komath SS (2006) Efflux pumps in drug resistance of Candida. Infect Disord Drug Targets 6:69–83

    Article  CAS  PubMed  Google Scholar 

  • Reines D (2003) Use of RNA yeast polymerase II mutants in studying transcription elongation. Methods Enzymol 371:284–292

    Article  CAS  PubMed  Google Scholar 

  • Reynolds SM, Kall L, Riffle ME, Bilmes JA, Noble WS (2008) Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Comput Biol 4:e1000213

    Article  PubMed  Google Scholar 

  • Riles L, Shaw RJ, Johnston M, Reines D (2004) Large-scale screening of yeast mutants for sensitivity to the IMP dehydrogenase inhibitor 6-azauracil. Yeast 21:241–248

    Article  CAS  PubMed  Google Scholar 

  • Sa-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP (2009) Drug:H + antiporters in chemical stress response in yeast. Trends Microbiol 17:22–31

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Reines D (2000) Saccharomyces cerevisiae transcription elongation mutants are defective in PUR5 induction in response to nucleotide depletion. Mol Cell Biol 20:7427–7437

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Wilson JL, Smith KT, Reines D (2001) Regulation of an IMP dehydrogenase gene and its overexpression in drug-sensitive transcription elongation mutants of yeast. J Biol Chem 276:32905–32916

    Article  CAS  PubMed  Google Scholar 

  • Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670

    Article  CAS  PubMed  Google Scholar 

  • Shimoaraiso M, Nakanishi T, Kubo T, Natori S (2000) Transcription elongation factor S-II confers yeast resistance to 6-azauracil by enhancing expression of the SSM1 gene. J Biol Chem 275:29623–29627

    Article  CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Souid AK, Gao C, Wang L, Milgrom E, Shen WC (2006) ELM1 is required for multidrug resistance in Saccharomyces cerevisiae. Genetics 173:1919–1937

    Article  CAS  PubMed  Google Scholar 

  • Stettler S, Chiannilkulchai N, Hermann-Le Denmat S, Lalo D, Lacroute F, Sentenac A, Thuriaux P (1993) A general suppressor of RNA polymerase I, II and III mutations in Saccharomyces cerevisiae. Mol Gen Genet 239:169–176

    CAS  PubMed  Google Scholar 

  • Tenreiro S, Rosa PC, Viegas CA, Sa-Correia I (2000) Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 16:1469–1481

    Article  CAS  PubMed  Google Scholar 

  • Tenreiro S, Fernandes AR, Sa-Correia I (2001) Transcriptional activation of FLR1 gene during Saccharomyces cerevisiae adaptation to growth with benomyl: role of Yap1p and Pdr3p. Biochem Biophys Res Commun 280:216–222

    Article  CAS  PubMed  Google Scholar 

  • Tuttle MS, Radisky D, Li L, Kaplan J (2003) A dominant allele of PDR1 alters transition metal resistance in yeast. J Biol Chem 278:1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Van Mullem V, Wery M, Werner M, Vandenhaute J, Thuriaux P (2002) The Rpb9 subunit of RNA polymerase II binds transcription factor TFIIE and interferes with the SAGA and elongator histone acetyltransferases. J Biol Chem 277:10220–10225

    Article  PubMed  Google Scholar 

  • Wery M, Shematorova E, Van Driessche B, Vandenhaute J, Thuriaux P, Van Mullem V (2004) Members of the SAGA and Mediator complexes are partners of the transcription elongation factor TFIIS. EMBO J 23:4232–4242

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Awrey DE, Edwards AM, Archambault J, Friesen JD (1996) In vitro characterization of mutant yeast RNA polymerase II with reduced binding for elongation factor TFIIS. Proc Natl Acad Sci USA 93:11552–11557

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Cui Z, Miyakawa T, Moye-Rowley WS (2001) Cross-talk between transcriptional regulators of multidrug resistance in Saccharomyces cerevisiae. J Biol Chem 276:8812–8819

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jesús de la Cruz and Dr. Francisco Muñoz for critical discussion. We also thank Dr. Moye-Rowley, Dr. Kaplan and Dr. Sá-Correia for kindly gift of YRR1-1, PDR3, and AZR1 and FLR1 plasmids. This work was supported by grants of Ministry of Science and Technology (BFU2007-67575-C03-03/BMC, Spain) and Junta de Andalucía (BIO258, Spain). M.C. García López was a recipient of a fellowship from Universidad de Jaén-Junta de Andalucía (supported by grant BMC2003-07072-C03-03 from Ministry of Science and Technology, Spain) and M. C. Mirón-García is supported by grant of Ministry of Science and Technology (BFU2007-67575-C03-03/BMC, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Navarro.

Additional information

Communicated by K. Kuchler.

M. C. García-López and M. C. Mirón-García have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-López, M.C., Mirón-García, M.C., Garrido-Godino, A.I. et al. Overexpression of SNG1 causes 6-azauracil resistance in Saccharomyces cerevisiae . Curr Genet 56, 251–263 (2010). https://doi.org/10.1007/s00294-010-0297-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-010-0297-z

Keywords

Navigation