Skip to main content

Advertisement

Log in

Cathepsin G: the significance in rheumatoid arthritis as a monocyte chemoattractant

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Human cathepsin G (EC 3.4.21.20) has been reported to have the in vitro chemotactic activity for human monocytes. In this study, we examined the role of cathepsin G in monocyte involvement in joint inflammation of rheumatoid arthritis (RA) as a monocyte chemoattractant. Eighteen patients with RA and four patients with osteoarthritis (OA) were used in this study. Thiobenzylester substrate, Succ-Phe-Leu-Phe-S-Bzl, was used to measure the activity of cathepsin G in synovial fluids. Monocyte migration induced by cathepsin G and synovial fluids was assessed by a 48-well microchemotaxis chamber technique. Immunohistochemical staining was performed to determine the cellular origin of cathepsin G in RA synovial tissue. A very low activity of cathepsin G was detected in synovial fluids from patients with OA. On the other hand, significantly increased activity of cathepsin G was detected in patients with RA when compared with the value of OA patients. A considerable monocyte chemotactic activity was detected in the synovial fluid of RA patients, and the activity was partially decreased by the treatment with inhibitors for cathepsin G, α1-antichymotrypsin and phenylmethylsulfonyl fluoride. The activity of cathepsin G was significantly correlated with the neutrophil counts in synovial fluids and the concentration of interleukin-6. Immunohistochemical studies showed that cathepsin G was strongly expressed by synovial lining cells, and weakly expressed by macrophages and neutrophils in synovial tissues. This study indicates that the monocyte chemotactic activity of cathepsin G may have a role in the pathogenesis of RA synovial inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harris ED Jr (1990) Rheumatoid arthritis: pathophysiology and implications for therapy. N Engl J Med 332:1277–1287

    Google Scholar 

  2. Shimizu T, Tani K, Hase K, Ogawa H, Huang L, Shinomiya F, Sone S (2002) CD13/aminopeptidase N-induced lymphocyte involvement in inflamed joints of rheumatoid arthritis. Arthritis Rheum 46:2330–2338

    Article  PubMed  CAS  Google Scholar 

  3. Burmester GR, Stuhlmüller B, Keyszer G, Kinne RW (1997) Mononuclear phagocytes and rheumatoid synovitis: mastermind or workhorse in arthritis? Arthritis Rheum 40:5–18

    Article  PubMed  CAS  Google Scholar 

  4. Shadidi KR, Thompson KM, Henriksen JE, Natvig JB, Aarvak T (2002) Association of antigen specificity and migratory capacity of memory T cells in rheumatoid arthritis. Scand J Immunol 55:274–283

    Article  PubMed  CAS  Google Scholar 

  5. Scott B, Weisbrot LM, Greenwood JD, Bogoch ER, Paige C, Keystone EC (1997) Rheumatoid arthritis synovial fibroblast and U937 macrophage/monocyte line interaction in cartilage degradation. Arthritis Rheum 40:490–498

    Article  PubMed  CAS  Google Scholar 

  6. Tani K, Shimizu T, Motoki Y, Sone S (2002) Chemokines in synovial inflammation of rheumatoid arthritis: basic and clinical aspects. Mod Rheumatol 12:93–99

    Article  CAS  Google Scholar 

  7. Spitznagel JK (1990) Antibiotic proteins of human neutrophils. J Clin Invest 86:1381–1386

    Article  PubMed  CAS  Google Scholar 

  8. Lehrer RI, Lichtenstein AK, Ganz Y (1993) Antimicrovial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11:105–125

    Article  PubMed  CAS  Google Scholar 

  9. Weissmannn G, Goldstein I, Hoffstein S, Chauvet G, Robineaux R (1975) Yin/Yang modulation of lysosomal enzyme release from polymorphonuclear leukocytes by cyclic nucleotide. Ann N Y Acad Sci 256:222–230

    Article  Google Scholar 

  10. Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ, Longo DL, Taub DD, Oppenheim JJ (1996) Identification of defensin-1, defensin-2, and CAP/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 271:2935–2940

    Article  PubMed  CAS  Google Scholar 

  11. Chertov O, Ueda H, Xu LL, Tani K, Murphy WJ, Wang JM, Howard OM, Sayers TJ, Oppenheim JJ (1997) Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils. J Exp Med 186:739–747

    Article  PubMed  CAS  Google Scholar 

  12. Tani K, Ogushi F, Kido H, Kawano T, Kunori Y, Kamimura T, Cui P, Sone S (2000) Chymase is a potent chemoattractant for human monocytes and neutrophils. J Leukoc Biol 67:585–589

    PubMed  CAS  Google Scholar 

  13. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 3:315–324

    Article  Google Scholar 

  14. Green GD, Shaw E (1979) Thiobenzyl benzyloxycarbonyl-l-lysinate, substrate for a sensitive colorimetric assay for trypsin-like enzymes. Anal Biochem 93:223–226

    Article  PubMed  CAS  Google Scholar 

  15. Faradji A, Bohbot A, Schmitt-Goguel M, Siffert JC, Dumont S, Wiesel ML, Piemont Y, Eischen A, Bergerat JP, Bartholeyns J (1994) Large scale isolation of human blood monocytes by continuous flow centrifugation leukapheresis and counterflow centrifugation elutriation for adoptive cellular immunotherapy in cancer patients. J Immunol Methods 174:297–309

    Article  PubMed  CAS  Google Scholar 

  16. Huang L, Tani K, Ogushi F, Ogawa H, Shimizu T, Motoki Y, Moriguchi H, Sone S (2002) Role of CD13/aminopeptidase N in rat lymphocytic alveolitis caused by thoracic irradiation. Radiat Res 157:191–198

    Article  PubMed  CAS  Google Scholar 

  17. Duranton J, Adam C, Bieth JG (1998) Kinetic mechanism of the inhibition of cathepisn G by alpha1-antichymotrypsin and alpha1-proteinase inhibitor. Biochemistry 37:11239–11245

    Article  PubMed  CAS  Google Scholar 

  18. Kalsheker NA (1996) Alpha1-antichymotrypsin. Int J Biochem Cell Biol 28:961–964

    Article  PubMed  CAS  Google Scholar 

  19. Patston PA (1995) Studies on inhibition of neutrophil cathepsin G by alpha-1 antichymotrypsin. Inflammation 19:75–81

    Article  PubMed  CAS  Google Scholar 

  20. Sone S, Yanagawa H, Nishioka Y, Orino E, Bhaskaran G, Nii A, Ogushi F, Ogura T (1992) Interleukin-4 as a potent down-regulator for human alveolar macrophages capable of producing tumor necrosis factor-alpha and interleukin-1. Eur Respir J 5:174–181

    PubMed  CAS  Google Scholar 

  21. Tani K, Ogushi F, Huang L, Kawano T, Tada H, Hariguchi N, Sone S (2000) CD13/aminopeptidase N: a novel chemoattractant for T lymphocytes in pulmonary sarcoidosis. Am J Respir Crit Care Med 161:1636–1642

    PubMed  CAS  Google Scholar 

  22. Green GD, Shaw E (1979) Thiobenzyl benzyloxycarbonyl-l-lysinate, substrate for a sensitive colorimetric assay for trypsin-like enzymes. Anal Biochem 93:223–226

    Article  PubMed  CAS  Google Scholar 

  23. Schmidt W, Havemann K (1974) Isolation of elastase-like and chymotrypsin-like neutral proteases from human granulocytes. HoppeSeyler’s A Physiol Chem 355:1077–1082

    CAS  Google Scholar 

  24. Borregaard N, Lollike K, Kjeldsen L, Sengelov H, Bastholm L, Nielsen MH, Bainton DF (1993) Human neutrophil granules and secretory vesicles. Eur J Haematol 51:187–198

    Article  PubMed  CAS  Google Scholar 

  25. Nordstrom D, Lindy O, Konttinen YT, Lauhio A, Sorsa T, Friman C, Pettersson T, Santavirta S (1996) Cathepsin G and elastase in synovial fluid and peripheral blood in reactive and rheumatoid arthritis. Clin Rheumatol 15:35–41

    Article  PubMed  CAS  Google Scholar 

  26. Campbell EJ, Silverman EK, Campbell MA (1989) Elastase and cathepsin G of human monocytes. J Immunol 143:2961–2968

    PubMed  CAS  Google Scholar 

  27. Caughey GH (1994) Serine proteinases of mast cell and leukocyte granules. Am J Respir Crit Care Med 150:S138–S142

    PubMed  CAS  Google Scholar 

  28. Konttinen YT, Kaapa E, Hukkanen M, Gu XH, Takagi M, Santavirta S, Alaranta H, Li TF, Suda A (1999) Cathepsin G in degenerating and healthy discal tissue. Clin Exp Rheumatol 17:197–204

    PubMed  CAS  Google Scholar 

  29. Yamazaki T, Aoki Y (1997) Cathepsin G binds to human lymphocytes. J Leukocyte Biol 61:73–79

    PubMed  CAS  Google Scholar 

  30. Selak MA., Smith JB (1990) Cathepsin G binding to human platelets: evidence for a specific receptor. Biochem J 266:55–62

    PubMed  CAS  Google Scholar 

  31. Dery O, Corvera CU, Steinhoff M, Bunnett NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274(6 Pt 1):C1429–C1452

    PubMed  CAS  Google Scholar 

  32. Gabazza EC, Taguchi O, Kamada H, Hayashi T, Adachi Y, Suzuki K (2004) Progress in the understanding of protease-activated receptors. Int J Hematol 79:117–122

    PubMed  CAS  Google Scholar 

  33. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR (2000) Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 275:6819–6823

    Article  PubMed  CAS  Google Scholar 

  34. Uehara A, Muramoto K, Takada H., Sugawara S (2003) Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through protease-activated receptor 2. J Immunol 170:5690–5696

    PubMed  CAS  Google Scholar 

  35. Colognato R, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T (2003) Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood 102:2645–2652

    Article  PubMed  CAS  Google Scholar 

  36. Selak MA, Smith JB (1994) Cathepsin G and thrombin evidence: for two different receptors. Biochem J 297:269–275

    PubMed  CAS  Google Scholar 

  37. Sabri A, Alcott SG, Elouardighi H, Pak E, Derian C, Andrade-Gordon P, Kinnally K, Steinberg SF (2003) Neutrophil cathepsin G promotes detachment-induced cardiomyocyte apoptosis via a protease-activated receptor-independent mechanism. J Biol Chem 278:23944–23954

    Article  PubMed  CAS  Google Scholar 

  38. Sun R, Iribarren P, Zhang N, Zhou Y, Gong W, Cho EH, Lockett S, Chertov O, Bednar F, Rogers TJ, Oppenheim JJ, Wang JM (2004) Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor. J Immunol 173:428–436

    PubMed  CAS  Google Scholar 

  39. Vischer TL, Bretz U, Baggiolini M (1976) In vitro stimulation of lymphocytes by neutral proteinases from human polymorphonuclear leukocyte granules. J Exp Med 144:853–872

    Article  Google Scholar 

  40. Yamazaki T, Aoki Y (1998) Cathepsin G enhances human natural killer cytotoxicity. Immunology 93:115–121

    Article  PubMed  CAS  Google Scholar 

  41. Tani K, Murphy WJ, Chertov O, Oppenheim JJ, Wang JM (2001) The neutrophil granule protein cathepsin G activates murine T lymphocytes and upregulates antigen-specific IG production in mice. Biochem Biophys Res Commun 282:971–976

    Article  PubMed  CAS  Google Scholar 

  42. Robinson E, Keystone EC, Schall TJ, Gillett N, Fish EN (1995) Chemokine expression in rheumatoid arthritis (RA): evidence of RANTES and macrophage inflammatory protein (MIP)-1 beta production by synovial T cells. Clin Exp Immunol 101:398–407

    Article  PubMed  CAS  Google Scholar 

  43. Schmutz C, Hulme A, Burman A, Salmon M, Ashton B, Buckley C, Middleton J (2005) Chemokine receptors in the rheumatoid synovium: unpregulation of CXCR5. Arthritis Res Ther 7:217–229

    Article  CAS  Google Scholar 

  44. Janusz MJ, Doherty NS (1991) Degradation of cartilage matrix proteoglycan by human neutrophils involves both elastase and cathepsin G. J Immunol 146:3922–3928

    PubMed  CAS  Google Scholar 

  45. Reilly CF, Tewksbury DA, Schechter NM, Travis J (1982) Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases. J Biol Chem 257:8619–8622

    PubMed  CAS  Google Scholar 

  46. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98:1289–1297

    Article  PubMed  CAS  Google Scholar 

  47. Bank U, Ansorge S (2001) More than destructive: neutrophil-derived serine proteases in cytokine bioactivity control. J Leukoc Biol 69:197–206

    PubMed  CAS  Google Scholar 

  48. Gardiner EE, De Luca M, McNally T, Michelson AD, Andrews RK, Berndt MC (2001) Regulation of P-selectin binding to the neutrophil P-selectin counter-receptor P-selectin glycoprotein ligand-1 by neutrophil elastase and cathepsin G. Blood 98:1440–1447

    Article  PubMed  CAS  Google Scholar 

  49. Steinmeyer J, Kalbhen DA (1996) The inhibitory effects of antirheumatic drugs on the activity of human leukocyte elastase and cathepsin G. Inflamm Res 45:324–329

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Tomoko Oka for assistance with monocyte preparation. This work was supported in part by a Grant-in-Aid for General Scientific Research (B) from the Ministry of Education, Science and Culture and the Ministry of Health and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saburo Sone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyata, J., Tani, K., Sato, K. et al. Cathepsin G: the significance in rheumatoid arthritis as a monocyte chemoattractant. Rheumatol Int 27, 375–382 (2007). https://doi.org/10.1007/s00296-006-0210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-006-0210-8

Keywords

Navigation