Skip to main content
Log in

Use of real-time PCR for determining copy number and zygosity in transgenic plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

This review examines how real-time PCR can be used to determine copy number and zygosity in transgenic plants. Distinguishing between plants that harbor one and two copies of a transgene or are hemizygous and homozygous requires the ability to routinely distinguish twofold differences, a detection difference which approaches the resolution of PCR-based quantification methods. After explaining the basic principles, especially the threshold cycle (Ct value) as the basic measuring unit in real-time PCR, we introduce three quantitation methods currently in use. While the absolute and relative standard curve approaches are qualitative methods that distinguish high-copy from low-copy transformants, the comparative (\(2^{{ - \Delta \Delta {\text{Ct}}}} \)) method with double-dye oligonucleotides (TaqMan probes) is able to detect twofold differences. In order to obtain reliable results, Ct values for an amplicon should be below 25 and the standard deviation below 0.3. Although real-time PCR can deliver exact copy number determinations, the procedure is not fail-safe. Therefore, real-time PCR should to be viewed as complementary to—rather than as a replacement of—other methods such as Southern analysis, but it is particularly useful as a preliminary screening tool for estimating copy numbers of a large number of transformants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bhalla PL, Smith N (1998) Agrobacterium tumefaciens-mediated transformation of cauliflower, Brassica oleracea var. botrytis. Mol Breed 4:531–541

    Article  CAS  Google Scholar 

  • Bhat SR, Srinivasan S (2002) Molecular and genetic analyses of transgenic plants: considerations and approaches. Plant Sci 163:673–681

    Article  CAS  Google Scholar 

  • Bieche I, Olivi M, Champeme MH, Vidaud D, Lidereau R, Vidaud M (1998) Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer. Int J Cancer 78:661–666

    Article  CAS  PubMed  Google Scholar 

  • Bubner B, Gase K, Baldwin IT (2004) Twofold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR. BMC Biotechnol 4:14

    Article  PubMed  Google Scholar 

  • Callaway AS, Abranches R, Scroggs J, Allen GC, Thompson WF (2002) High-throughput transgene copy number estimation by competitive PCR. Plant Mol Biol Rep 20:265–277

    CAS  Google Scholar 

  • Caplin BE, Rasmussen RP, Bernard PS, Wittwer CT (1999) LightCycler hybridisation probes—the most direct way to monitor PCR amplification and mutation detection. Biochemica 1:5–8

    Google Scholar 

  • Cullen DW, Lees AK, Toth IK, Duncan JM (2002) Detection of Colletotrichum coccodes from soil and potato tubers by conventional and quantitative real-time PCR. Plant Pathol 51:281–292

    Article  CAS  Google Scholar 

  • Freeman WM, Walker SJ, Vrana KE (1999) Quantitative RT-PCR: pitfalls and potential. Biotechniques 26:112–125

    CAS  PubMed  Google Scholar 

  • German MA, Kandel-Kfir M, Swarzberg D, Matsevitz T, Granot D (2003) A rapid method for the analysis of zygosity in transgenic plants. Plant Sci 164:183–187

    Article  CAS  Google Scholar 

  • Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30:503–512

    Article  CAS  PubMed  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real-time quantitative PCR. Genome Res 6:986–994

    CAS  PubMed  Google Scholar 

  • Hernandez M, Pla M, Esteve T, Prat S, Puigdomenech P, Ferrando A (2003) A specific real-time quantitative PCR detection system for event MON810 in maize YieldGard based on the 3′-transgene integration sequence. Transgenic Res 12:179–189

    Article  CAS  PubMed  Google Scholar 

  • Hernandez M, Esteve T, Prat S, Pla M (2004) Development of real-time PCR systems based on SYBR Green I, Amplifluor and TaqMan technologies for specific quantitative detection of the transgenic maize event GA21. J Cereal Sci 39:99–107

    Article  Google Scholar 

  • Holck A, Va M, Didierjean L, Rudi K (2002) 5′-Nuclease PCR for quantitative event-specific detection of the genetically modified Mon810 MaisGard maize. Eur Food Res Technol 214:449–453

    Article  CAS  Google Scholar 

  • Honda M, Muramoto Y, Kuzuguchi T, Sawano S, Machida M, Koyama H (2002) Determination of gene copy number and genotype of transgenic Arabidopsis thaliana by competitive PCR. J Exp Bot 53:1515–1520

    Article  CAS  PubMed  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140

    CAS  PubMed  Google Scholar 

  • James VA, Avart C, Worland B, Snape JW, Vain P (2002) The relationship between homozygous and hemizygous transgene expression levels over generations in populations of transgenic rice plants. Theor Appl Genet 104:553–561

    Article  CAS  PubMed  Google Scholar 

  • Johnson MR, Wang KS, Smith JB, Heslin MJ, Diasio RB (2000) Quantitation of dihydropyrimidine dehydrogenase expression by real-time reverse transcription polymerase chain reaction. Anal Biochem 278:175–184

    Article  CAS  PubMed  Google Scholar 

  • Kim MK, Jeon JH, Fujita M, Davin LB, Lewis NG (2002) The western red cedar (Thuja plicata) 8–8′ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Mol Biol 49:199–214

    Article  CAS  PubMed  Google Scholar 

  • Kok JB de, Wiegerinck ETG, Giesendorf BAJ, Swinkels DW (2002) Rapid genotyping of single nucleotide polymorphisms using novel minor groove binding DNA oligonucleotides (MGB probes). Hum Mutat 19:554–559

    Article  PubMed  Google Scholar 

  • Krügel T, Lim M, Gase K, Halitschke R, Baldwin IT (2002) Agrobacterium-mediated transformation of Nicotiana attenuata, a model ecological expression system. Chemoecology 12:177–183

    Google Scholar 

  • Kutyavin IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov ES, Singer MJ, Walburger DK, Lokhov SG, Gall AA, Dempcy R, Reed MW, Meyer RB, Hedgpeth J (2000) 3′-Minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28:655–661

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mason G, Provero P, Varia AM, Acotto GP (2003) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:20

    Article  Google Scholar 

  • McGarvey P, Kaper JM (1991) A simple and rapid method for screening transgenic plants using the PCR. Biotechniques 11:428–432

    CAS  PubMed  Google Scholar 

  • Meyer P (1998) Stabilities and instabilities in transgene expression. In: Lindsey K (ed) Transgenic plant research. Harwood Academic, Amsterdam, pp 263–275

    Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  CAS  PubMed  Google Scholar 

  • Ponchel F et al (2003) Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol 3:18

    Article  PubMed  Google Scholar 

  • ABI PRISM (1997) Sequence Detection System 7700 User Bulletin, Foster City, Calif. No. 2:3–10

  • ABI PRISM (1998) Sequence Detection System 7700 User Bulletin, Foster City, Calif. No. 5:2–4

  • Raggi CC et al (1999) Real-time quantitative PCR for the measurement of MYCN amplification in human neuroblastoma with the TaqMan detection system. Clin Chem 45:1918–1924

    CAS  PubMed  Google Scholar 

  • Robinson JK, Mueller R, Filippone L (2000) New molecular beacon technology. Am Lab 32:30–34

    CAS  Google Scholar 

  • Salmon MA, Vendrame M, Kummert J, Lepoivre P (2002) Detection of apple chlorotic leaf spot virus using a 5′ nuclease assay with a fluorescent 3′ minor groove binder-DNA probe. J Virol Methods 104:99–106

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MA, Parrott WA (2001) Quantitative detection of transgenes in soybean [Glycine max (L.) Merrill] and peanut (Arachis hypogaea L.) by real-time polymerase chain reaction. Plant Cell Rep 20:422–428

    Article  CAS  Google Scholar 

  • Selvapandiyan A, Reddy VS, Kumar PA, Tewari KK, Bhatnagar RK (1998) Transformation of Nicotiana tabacum with a native cry1Ia5 gene confers complete protection against Heliothis armigera. Mol Breed 4:473–478

    Article  CAS  Google Scholar 

  • Shou HX, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  • Smith N, Kilpatrick JB, Whitelam GC (2001) Superfluous transgene integration in plants. Crit Rev Plant Sci 20:215–249

    Article  CAS  Google Scholar 

  • Song P, Cai CQ, Skokut M, Kosegi BD, Petolino JF (2002) Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERS-derived transgenic maize. Plant Cell Rep 20:948–954

    Article  CAS  Google Scholar 

  • Svensson AS, Johnsson FI, Moller IM, Rasmusson AG (2002) Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves. FEBS Lett 517:79–82

    Article  CAS  PubMed  Google Scholar 

  • Terry CF, Harris N (2001) Event-specific detection of Roundup Ready Soya using two different real time PCR detection chemistries. Eur Food Res Technol 213:425–431

    Article  CAS  Google Scholar 

  • Tesson L, Heslan JM, Menoret S, Anegon I (2002) Rapid and accurate determination of zygosity in transgenic animals by real-time quantitative PCR. Transgenic Res 11:43–48

    Article  CAS  PubMed  Google Scholar 

  • Weller SA, Elphinstone JG, Smith NC, Boonham N, Stead DE (2000) Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl Environ Microbiol 66:2853–2858

    Article  CAS  PubMed  Google Scholar 

  • Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm J, Pingoud A (2003) Real-time polymerase chain reaction. Chembiochem 4:1120–1128

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian T. Baldwin.

Additional information

Communicated by P.P. Kumar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubner, B., Baldwin, I.T. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep 23, 263–271 (2004). https://doi.org/10.1007/s00299-004-0859-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0859-y

Keywords

Navigation