Skip to main content
Log in

The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Here we report the effect of the 35S promoter sequence on activities of the tissue- and organ-specific gene promoters in tobacco plants. In the absence of the 35S promoter sequence the AAP2 promoter is active only in vascular tissues as indicated by expression of the AAP2:GUS gene. With the 35S promoter sequence in the same T-plasmid, transgenic plants exhibit twofold to fivefold increase in AAP2 promoter activity and the promoter becomes active in all tissue types. Transgenic plants hosting the ovary-specific AGL5:iaaM gene (iaaM coding an auxin biosynthetic gene) showed a wild-type phenotype except production of seedless fruits, whereas plants hosting the AGL5:iaaM gene along with the 35S promoter sequence showed drastic morphological alterations. RT-PCR analysis confirms that the phenotype was caused by activation of the AGL5:iaaM gene in non-ovary organs including roots, stems and flowers. When the pollen-, ovule- and early embryo-specific PAB5:barnase gene (barnase coding a RNase gene) was transformed, the presence of 35S promoter sequence drastically reduced transformation efficiencies. However, the transformation efficiencies were restored in the absence of 35S promoter, indicating that the 35S promoter might activate the expression of PAB5:barnase in non-reproductive organs such as calli and shoot primordia. Furthermore, if the 35S promoter sequence was replaced with the NOS promoter sequence, no alteration in AAP2, AGL5 or PAB5 promoter activities was observed. Our results demonstrate that the 35S promoter sequence can convert an adjacent tissue- and organ-specific gene promoter into a globally active promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAP2 :

H+/amino acid permease gene 2

AGL5 :

AGAMOUS-like MADS box protein 5

PAB5 :

Poly (A) binding protein 5

iaaM :

IAA monooxygenase

CaMV 35S :

Cauliflower mosaic virus 35S promoter

GUS :

β-Glucuronidase

NOS :

Nopaline synthase

nptII :

Neomycin phosphotransferase

BA :

Benzylaminopurine

NAA :

Naphthaleneacetic acid

X-Gluc :

5-Bromo-4-chloro-3-indolyl-b-d-glucuronic acid

MU :

4-Methyl umbelliferone

References

  • An G, Costa MA, Mitra A, Ha SB, Márton L (1988) Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol 88:547–552

    Article  PubMed  CAS  Google Scholar 

  • Battraw MH, Hall TC (1990) Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol 15:527–538

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky DA, Meagher RB (1996) A pollen-, ovule-, and early embryo-specific poly(A) binding protein from Arabidopsis complements essential functions in yeast. Plant Cell 8:1261–1275

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8:2195–2202

    PubMed  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990a) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990b) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J 9:1685–1696

    CAS  Google Scholar 

  • Bevan MW (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Bevan MW, Barnes WM, Chilton MD (1983a) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res 11:369–385

    Article  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983b) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Bouchez D, Camilleri C, Caboche M (1993) A binary vector based on Basta resistance for in planta transformation of Arabidopsis thaliana. C R Acad Sci Paris 316:1188–1193

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carolina RR (2003) Promoters used to regulate gene expression http://www.cambia.org/daisy/promoters/768.html

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  PubMed  CAS  Google Scholar 

  • Fang RX, Nagy F, Sivasubramaniam S, Chua NH (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1:141–150

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Drossard J, Commandeur U, Schillberg S, Emans N (1999) Towards molecular farming in the future: moving from diagnostic protein and antibody production in microbes to plants. Biotechnol Appl Biochem 30:101–108

    PubMed  CAS  Google Scholar 

  • Franck A, Guilley H, Jonard G, Richards K, Hirth L (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21:285–294

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Czaja I, Lubenow H, Schell J, Walden R (1992) Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 258:1350–1353

    Article  PubMed  CAS  Google Scholar 

  • Hennegan KP, Danna KJ (1998) pBIN20: An improved binary vector for Agrobacterium-mediated transformation. Plant Mol Biol Rep 16:129–131

    Article  CAS  Google Scholar 

  • Herrera-Estrella L, De Block M, Messens E, Hernalsteens JP, Van Montagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–995

    PubMed  CAS  Google Scholar 

  • Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB. 1998. Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. Plant J 14:535–544

    Article  PubMed  CAS  Google Scholar 

  • Ho MW, Ryan A, Cummins J (1999) Cauliflower mosaic viral promoter—a recipe for disaster? Microb Ecol Health Dis 11:194–197

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichhotz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jeong DH, An S Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644

    Article  PubMed  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffman NL (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosyntheticgene products in transgenic petunia plants. Genes Dev 1:86–96

    Article  CAS  Google Scholar 

  • Li Y (1998) Transgenic seedless fruit comprising AGL or GH3 promoter operably linked to isopentenyl transferase or tryptophan monooxygenase coding DNA. US Patent 6,268,552

  • Lichtenstein CP, Fuller SL (1987) Vectors for the genetic engineering of plants. In: Genetic engineering. Academic, London

  • Long D, Swinburne J, Martin M, Wilson K, Sundberg E, Lee K, Coupland G. (1993) Analysis of the frequency of inheritance of transposed Ds elements in Arabidopsis after activation by a CaMV 35S promoter fusion to the Ac transposase gene. Mol Gen Genet 241:627–36

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, Beuckeleer MD, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Mariani C, Gossele V, Beuckeleer MD, Block MD, Goldberg RB, Greef WD, Leemans J (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissure cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96:15316–15323

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki S, Levine M, Cai HN (1998) Different core promoters possess distinct regulatory activities in the Drosophila embryo. Genes Dev 12:547–556

    PubMed  CAS  Google Scholar 

  • Ouwerkerk PB, de Kam RJ, Hoge JH, Meijer AH (2001) Glucocorticoid-inducible gene expression in rice. Planta 213:370–378

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell D (2000) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanders PR, Winter JA, Barnason AR, Rogers SG, Fraley RT (1987) Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res 4:1543–1558

    Article  Google Scholar 

  • Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity. Plant Cell 7:721–733

    Article  PubMed  CAS  Google Scholar 

  • Sitbon F, Hennion S, Sundberg B, Anthony Little CH, Oisson O, Sandberg G (1992) Transgenic tobacco plants co-expressing the Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indoleacetic acid metabolism. Plant Physiol 99:1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Thangavelu M, Belostotsky D, Bevan MW, Flavell RB, Rogers HJ, Lonsdale DM (1993) Partial characterization of the Nicotiana tabacum actin gene family: evidence for pollen-specific expression of one of the gene family members. Mol Gen Genet 240:290–295

    Article  PubMed  CAS  Google Scholar 

  • Van der Graaff E, Dulk-Ras AD, Hooykaas PJ, Keller B (2000) Activation tagging of the leafy petiole gene affects leaf petiole development in Arabidopsis thaliana. Development 127:4971–4980

    PubMed  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Wilke D (1999) Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Appl Microbiol Biotechnol 52:135–145

    Article  PubMed  CAS  Google Scholar 

  • Wilson K, Long D, Swinburne J, Coupland G (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8:659–671

    Article  PubMed  CAS  Google Scholar 

  • Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221:523–530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Robert W Hartley (Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health) for generously providing plasmids pMT316 and pMT1002. We also thank Mr. Fengtao Luo for his work in plant genetic transformation and GUS staining analysis. This work was supported by USDA, CPBR/DOE and UConn Research Foundation to Yi Li, and National Natural Science Foundation of China (NSFC: 30530490) and National Basic Research and Development Program (2004CB117300) to Yan Pei.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Pei or Yi Li.

Additional information

Communicated by P. Lakshmanan.

Xuelian Zheng and Wei Deng contributed equally to this work and are considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Deng, W., Luo, K. et al. The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep 26, 1195–1203 (2007). https://doi.org/10.1007/s00299-007-0307-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0307-x

Keywords

Navigation