Skip to main content
Log in

Jasmonate biosynthesis and signaling in monocots: a comparative overview

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The plant hormone jasmonate (JA) fulfils essential roles in plant defense and development. While most of our current understanding of the JA pathway comes from the dicotyledonous model plant Arabidopsis thaliana, new studies in monocotyledonous plants are providing additional insights into this important hormone signaling pathway. In this review, we present a comparative overview of the JA biosynthetic and signaling pathways in monocots. We highlight recent studies that have revealed molecular mechanisms (mostly conserved but also diverged) underlying JA signaling and biosynthesis in the economically important plants: maize and rice. A better understanding of the JA pathway in monocots should lead to significant improvements in pest and pathogen resistance in cereal crops, which provide the bulk of the world’s food and feed supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Tamogami S, Han O, Iwahashi H, Rakwal R (2004) Rice octadecanoid pathway. Biochem Biophys Res Commun 317:1–15

    Article  PubMed  CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  PubMed  CAS  Google Scholar 

  • Ankala A, Luthe DS, Williams WP, Wilkinson JR (2009) Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP. Mol Plant Microbe Interact 22:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Meng Y, Huang D, Qi Y, Chen M (2011) Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98:128–136

    Article  PubMed  CAS  Google Scholar 

  • Bargmann BOR, Laxalt AM, Ter Riet B, Testerink C, Merquiol E, Mosblech A, Leon-Reyes A, Pieterse CMJ, Haring MA, Heilmann I, Bartels D, Munnik T (2009) Reassessing the role of phospholipase D in the Arabidopsis wounding response. Plant, Cell Environ 32:837–850

    Article  CAS  Google Scholar 

  • Bennypaul HS, Mutti JS, Rustgi S, Kumar N, Okubara PA, Gill KS (2012) Virus-induced gene silencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat. Funct Integr Genomics 12:143–156

    Article  PubMed  CAS  Google Scholar 

  • Browse J (2009) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70:1539–1546

    Article  PubMed  CAS  Google Scholar 

  • Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767

    Article  PubMed  CAS  Google Scholar 

  • Caldelari D, Wang G, Farmer EE, Dong X (2011) Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol Biol 75:25–33

    Article  PubMed  CAS  Google Scholar 

  • Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–555

    Article  PubMed  CAS  Google Scholar 

  • Chehab EW, Raman G, Walley JW, Perea JV, Banu G, Theg S, Dehesh K (2006) Rice HYDROPEROXIDE LYASES with unique expression patterns generate distinct aldehyde signatures in Arabidopsis. Plant Physiol 141:121–134

    Article  PubMed  CAS  Google Scholar 

  • Chehab EW, Perea JV, Gopalan B, Theg S, Dehesh K (2007) Oxylipin pathway in rice and Arabidopsis. J Integ Plant Biol 49:43–51

    Article  CAS  Google Scholar 

  • Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916

    Article  PubMed  CAS  Google Scholar 

  • Chico JM, Chini A, Fonseca S, Solano R (2008) JAZ repressors set the rhythm in jasmonate signaling. Curr Opin Plant Biol 11:486–494

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Christensen SA, Nemchenko A, Borrego E, Murray I, Sobhy IS, Bosak L, Deblasio S, Erb M, Robert CA, Vaughn KA, Herrfurth C, Tumlinson J, Feussner I, Jackson D, Turlings TC, Engelberth J, Nansen C, Meeley R, Kolomiets MV (2012) The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate, and herbivore-induced plant volatile production for defense against insect attack. Plant J. doi:10.1111/tpj.12101

    Google Scholar 

  • Christiansen MW, Holm PB, Gregersen PL (2012) Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots. BMC Res Notes 4:302

    Article  CAS  Google Scholar 

  • Chung HS, Cooke TF, Depew CL, Patel LC, Ogawa N, Kobayashi Y, Howe GA (2010) Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling. Plant J 63:613–622

    Article  PubMed  CAS  Google Scholar 

  • Delong A, Calderonurrea A, Dellaporta S (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol-dehydrogenase required for stage-specific floral organ abortion. Cell 74:757–768

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Liu H, Li X, Xiao J, Wang S (2012) A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol 158:876–889

    Article  PubMed  CAS  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  PubMed  CAS  Google Scholar 

  • Ellinger D, Stingl N, Kubigsteltig II, Bals T, Juenger M, Pollmann S, Berger S, Schuenemann D, Mueller MJ (2010) Dongle and defective in anther dehiscence1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. Plant Physiol 153:114–127

    Article  PubMed  CAS  Google Scholar 

  • Emerson RA (1920) Heritable characters of maize II: Pistillate flowered maize plants. J Hered 11:65–76

    Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald TL, Kazan K, Li Z, Morell MK, Manners JM (2010) A high-throughput method for the detection of homologous gene deletions in hexaploid wheat. BMC Plant Biol 10:264

    Article  PubMed  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Shim WB, Göbel C, Kunze S, Feussner I, Meeley R, Balint-Kurti P, Kolomiets M (2007) Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol Plant Microbe Interact 20:922–933

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Starr J, Göbel C, Engelberth J, Feussner I, Tumlinson J, Kolomiets M (2008) Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol Plant Microbe Interact 21:98–109

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Brodhagen M, Isakeit T, Brown SH, Göbel C, Betran J, Feussner I, Keller NP, Kolomiets MV (2009) Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact 22:222–231

    Article  PubMed  CAS  Google Scholar 

  • Grant MR, Kazan K, Manners JM (2013) Exploiting pathogens’ tricks of the trade for engineering of plant disease resistance: challenges and opportunities. Microb Biotechnol. doi:10.1111/1751-7915.12017

    PubMed  Google Scholar 

  • Haga K, Iino M (2004) Phytochrome-mediated transcriptional up-regulation of allene oxide synthase in rice seedlings. Plant Cell Physiol 45:119–128

    Article  PubMed  CAS  Google Scholar 

  • Halitschke R, Baldwin IT (2003) Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant J 36:794–807

    Article  PubMed  CAS  Google Scholar 

  • Halitschke R, Ziegler J, Keinanen M, Baldwin IT (2004) Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata. Plant J 40:35–46

    Article  PubMed  CAS  Google Scholar 

  • Heinrich M, Hettenhausen C, Lange T, Wünsche H, Fang J, Baldwin IT, Wu J (2013) High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. Plant J. doi:10.1111/tpj.12058

    PubMed  Google Scholar 

  • Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Désaubry L, Holder E, Grausem B, Kandel S, Miesch M, Werck-Reichhart D, Pinot F (2012) Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J Biol Chem 287:6296–6306

    Article  PubMed  CAS  Google Scholar 

  • Howe GA (2010) Ubiquitin ligase-coupled receptors extend their reach to jasmonate. Plant Physiol 154:471–474

    Article  PubMed  CAS  Google Scholar 

  • Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PE, Schmelz EA (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156:2082–2097

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The defective in anther dehiscence gene encodes a novel phospholipase A1 catalyzing the critical step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    PubMed  CAS  Google Scholar 

  • Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384

    Article  PubMed  CAS  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant-Microbe Interact 23:791–798

    Article  PubMed  CAS  Google Scholar 

  • Kazan K (2006) Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends Plant Sci 11:109–112

    Article  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468

    Article  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382

    Article  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2011) The interplay between light and jasmonate signalling during defence and development. J Exp Bot 62:4087–4100

    Article  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31

    Article  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant: doi:10.1093/mp/sss128

    Google Scholar 

  • Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–2252

    Article  PubMed  CAS  Google Scholar 

  • Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K (2011) Diverse roles of the mediator complex in plants. Semin Cell Dev Biol 22:741–748

    Article  PubMed  CAS  Google Scholar 

  • Kim ES, Choi E, Kim Y, Cho K, Lee A, Shim J, Rakwal R, Agrawal GK, Han O (2003) Dual positional specificity and expression of non-traditional lipoxygenase induced by wounding and methyl jasmonate in maize seedlings. Plant Mol Biol 52:1203–1213

    Article  PubMed  Google Scholar 

  • Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY, Lee IJ, Kim JK (2009) Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol 149:1751–1760

    Article  PubMed  CAS  Google Scholar 

  • Kim B, Jujioka S, Kwon M, Jeon J, Sunghwa C (2013) Arabidopsis brassinosteroid-overproducing gulliver3-D/dwarf4-D mutants exhibit altered responses to jasmonic acid and pathogen. Plant Cell Rep. doi:10.1007/s00299-012-1381-2

    Google Scholar 

  • Kitaoka N, Matsubara T, Sato M, Takahashi K, Wakuta S, Kawaide H, Matsui H, Nabeta K, Matsuura H (2011) Arabidopsis CYP94B3 encodes jasmonyl-l-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant Cell Physiol 52:1757–1765

    Article  PubMed  CAS  Google Scholar 

  • Koo AJK, Howe GA (2012) Catabolism and deactivation of the lipid-hormone jasmonoyl-isoleucine. Front Plant Sci 3:19

    Article  PubMed  CAS  Google Scholar 

  • Koo AJ, Cooke TF, Howe GA (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-l-isoleucine. Proc Natl Acad Sci USA 108:9298–9303

    Article  PubMed  CAS  Google Scholar 

  • Lee MW, Qi M, Yang Y (2001) A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol Plant Microbe Interact 14:527–535

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Seo JS, Cho JH, Jung H, Kim JK, Lee JS, Rhee S, Choi YD (2013) Oryza sativa COI homologues restore jasmonate signal transduction in Arabidopsis coi1-1 mutants. PLoS ONE 8:e52802

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of coronatine-insensitive1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143

    Article  PubMed  CAS  Google Scholar 

  • Li R, Afsheen S, Xin Z, Han X, Lou Y (2012) OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. Physiol Plant. doi:10.1111/j.1399-3054.2012.01666.x

    Google Scholar 

  • Liu XQ, Bai XQ, Qian Q, Wang XJ, Chen MS, Chu CC (2005) OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res 15:593–603

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:679–969

    Google Scholar 

  • Liu X, Li F, Tang J, Wang W, Zhang F, Wang G, Chu J, Yan C, Wang T, Chu C, Li C (2012) Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS ONE 7:e50089

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Ju H, Zhou G, Zhu C, Erb M, Wang X, Wang P, Lou Y (2011) An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. Plant J 68:583–596

    Article  PubMed  CAS  Google Scholar 

  • Matsui K (2006) Green leaf volatiles, hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  PubMed  CAS  Google Scholar 

  • Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157:305–316

    Article  PubMed  CAS  Google Scholar 

  • Nahar K, Kyndt T, Nzogela YB, Gheysen G (2012) Abscisic acid interacts antagonistically with classical defense pathways in rice-migratory nematode interaction. New Phytol 196:901–913

    Article  PubMed  CAS  Google Scholar 

  • Nahar K, Kyndt T, Hause B, Höfte M, Gheysen G (2013) Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Mol Plant Microbe Interact 26:106–115

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12

    Article  PubMed  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins, a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    PubMed  CAS  Google Scholar 

  • Qi J, Zhou G, Yang L, Erb M, Lu Y, Sun X, Cheng J, Lou Y (2011) The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice. Plant Physiol 157:1987–1999

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499

    Article  PubMed  CAS  Google Scholar 

  • Rakwal R, Agrawal GK, Yonekura M, Kodama O (2000) Naringenin 7-O-methyltransferase involved in the biosynthesis of the flavanone phytoalexin sakuranetin from rice (Oryza sativa L.). Plant Sci 155:213–221

    Article  PubMed  CAS  Google Scholar 

  • Rakwal R, Yang G, Komatsu S (2004) Chitinase induced by jasmonic acid, methyl jasmonate, ethylene and protein phosphatase inhibitors in rice. Mol Biol Rep 31:113–119

    Article  PubMed  CAS  Google Scholar 

  • Ralhan A, Schöttle S, Thurow C, Iven T, Feussner I, Polle A, Gatz C (2012) The vascular pathogen Verticillium longisporum requires a jasmonic acid-independent COI1 function in roots to elicit disease symptoms in Arabidopsis shoots. Plant Physiol 159:1192–1203

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen MW, Roux M, Petersen M, Mundy J (2012) MAP Kinase cascades in Arabidopsis innate immunity. Front Plant Sci 3:169

    Article  PubMed  Google Scholar 

  • Ren C, Han C, Peng W, Huang Y, Peng Z, Xiong X, Zhu Q, Gao B, Xie D (2009) A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiol 151:1412–1420

    Article  PubMed  CAS  Google Scholar 

  • Riemann M, Muller A, Korte A, Furuya M, Weiler EW, Nick P (2003) Impaired induction of the jasmonate pathway in the rice mutant hebiba. Plant Physiol 133:1820–1830

    Article  PubMed  CAS  Google Scholar 

  • Riemann M, Riemann M, Takano M (2008) Rice jasmonate resistant 1 is involved in phytochrome and jasmonate signalling. Plant, Cell Environ 31:783–792

    Article  CAS  Google Scholar 

  • Riemann M, Haga K, Shimizu T, Okada K, Ando S, Mochizuki S, Nishizawa Y, Yamanouchi U, Nick P, Yano M, Minami E, Takano M, Yamane H, Iino M (2013) Identification of rice allene oxide cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J. doi:10.1111/tpj.12115

    PubMed  Google Scholar 

  • Robson F, Okamoto H, Patrick E, Sue-Re H, Wasternack C, Brearley C, Turner JG (2010) Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22:1143–1160

    Article  PubMed  CAS  Google Scholar 

  • Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis delayed dehiscence1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1041–1061

    PubMed  CAS  Google Scholar 

  • Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci USA 108:5455–5560

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:4788–4793

    Article  PubMed  CAS  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    Article  PubMed  CAS  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Lin F, Hasegawa M, Okada K, Nojiri H, Yamane H (2012) Purification and identification of naringenin 7-O-methyltransferase, a key enzyme in the biosynthesis of the flavonoid phytoalexin sakuranetin in rice. J Biol Chem 287:19315–19325

    Article  PubMed  CAS  Google Scholar 

  • Silverstein KA, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Baranwal V, Shankar A, Kanwar P, Ranjan R, Yadav S, Pandey A, Kapoor S, Pandey GK (2012) Rice phospholipase A superfamily: organization, phylogenetic and expression analysis during abiotic stresses and development. PLoS ONE 7:e30947

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong XN, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D, Miersch O, Wasternack B, Hause C (2012) Allene oxide cyclase (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. J Exp Bot 63:6125–6138

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic and reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    Article  PubMed  CAS  Google Scholar 

  • Sun JQ, Jiang HL, Li CY (2011) Systemin/Jasmonate-mediated systemic defense signaling in tomato. Mol Plant 4:607–615

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Zhang H, Li D, Huang L, Hong Y, Ding XS, Nelson RS, Zhou X, Song F (2013) Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea. Plant Mol Biol 81:41–56

    Article  PubMed  CAS  Google Scholar 

  • Svyatyna K, Riemann M (2012) Light-dependent regulation of the jasmonate pathway. Protoplasma 249(Suppl 2):S137–S145

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P, Hashimoto M, Komano T, Endo A, Okamoto T, Jikumaru Y, Kamiya Y, Terakawa T, Koshiba T (2011) RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52:1686–1696

    Article  PubMed  CAS  Google Scholar 

  • Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H (2008) Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227:517–526

    Article  PubMed  CAS  Google Scholar 

  • Tao Z, Liu H, Qiu D, Zhou Y, Li X, Xu C, Wang S (2009) A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol 151:936–948

    Article  PubMed  CAS  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    Article  PubMed  CAS  Google Scholar 

  • Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J 58:927–939

    Article  PubMed  CAS  Google Scholar 

  • Thatcher LF, Powell JJ, Aitken EA, Kazan K, Manners JM (2012) The lateral organ boundaries domain transcription factor LBD20 functions in Fusarium wilt susceptibility and jasmonate signaling in Arabidopsis. Plant Physiol 160:407–418

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF–COI1 complex during jasmonate signaling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WFRI (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Tong X, Qi J, Zhu X, Mao B, Zeng L, Wang B, Li Q, Zhou G, Xu X, Lou Y, He Z (2012) The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J 71:763–775

    Article  PubMed  CAS  Google Scholar 

  • Wakuta S, Suzuki E, Saburi W, Matsuura H, Nabeta K, Imai R, Matsui H (2011) OsJAR1 and OsJAR2 are jasmonyl-l-isoleucine synthases involved in wound- and pathogen induced jasmonic acid signalling. Biochem Biophys Res Commun 409:634–639

    Article  PubMed  CAS  Google Scholar 

  • Wang CX, Zien CA, Afitlhile M, Welti R, Hildebrand DF, Wang XM (2000) Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246

    PubMed  CAS  Google Scholar 

  • Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65:799–815

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Shen WB, Liu L, Jiang L, Liu Y, Su N, Wan J (2008) A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Mol Biol 66:401–414

    Article  PubMed  CAS  Google Scholar 

  • Wang JM, Liu HY, Xu HM, Li M, Kang ZS (2012) Analysis of differential transcriptional profiling in wheat infected by Blumeria graminis f. sp. tritici using GeneChip. Molec Biol Rep 39:381–387

    Article  CAS  Google Scholar 

  • Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y (2013) OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep. doi:10.1007/s00299-013-1389-2

    Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Woldemariam MG, Onkokesung N, Baldwin IT, Galis I (2012) Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-l-isoleucine levels and attenuates plant defenses against herbivores. Plant J 72:758–767

    Article  PubMed  CAS  Google Scholar 

  • Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS (2010) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep 37:3703–3712

    Article  PubMed  CAS  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Xie X-Z, Xue Y-J, Zhou J–J, Zhang B, Chang H, Takano M (2011) Phytochromes regulate SA and JA Signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant 4:688–696

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Kano A, Tamaoki D, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2012) Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiol 53:2060–2072

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery RJ, Kolomiets MV (2012) Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24:1420–1436

    Article  PubMed  CAS  Google Scholar 

  • Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW, Lee CM, Thomashow MF, Yang Y, He Z, He SY (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci USA 109:E1192–E1200

    Article  PubMed  CAS  Google Scholar 

  • Yazawa K, Jiang C-J, Kojima M, Sakakibara H, Takatsuji H (2011) Reduction of abscisic acid levels or inhibition of abscisic acid signaling in rice during the early phase of Magnaporthe oryzae infection decreases its susceptibility to the fungus. Physiol Molec Plant Pathol 78:1–7

    Article  CAS  Google Scholar 

  • Ye HY, Du H, Tang N, Li XH, Xiong LZ (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71:291–305

    Article  PubMed  CAS  Google Scholar 

  • Ye M, Luo SM, Xie JF, Li YF, Xu T, Liu Y, Song YY, Zhu-Salzman Y, Zeng RS (2012) Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS ONE 7:e36214

    Article  PubMed  CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Iwabuchi M, Matsui M, Hirochika H, Oda K (2013) Role of the rice transcription factor JAmyb in abiotic stress response. J Plant Res 126:131–139

    Article  PubMed  CAS  Google Scholar 

  • Yoshii M, Yamazaki M, Rakwal R, Kishi-Kaboshi M, Miyao A, Hirochika H (2010) The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. Plant J 61:804–815

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D, He Z (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5:313–324

    Article  PubMed  CAS  Google Scholar 

  • Zhou GX, Qi JF, Ren N, Cheng JA, Erb M, Mao BZ, Lou YG (2009) Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J 60:638–648

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

RL is funded by a CSIRO OCE (Office of the Chief Executive) postdoctoral fellowship. We apologize to colleagues whose relevant work could not be highlighted in this review due to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Kazan.

Additional information

Communicated by P. Kumar.

A contribution to the Special Issue: Plant Hormone Signaling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, R., Manners, J.M. & Kazan, K. Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Rep 32, 815–827 (2013). https://doi.org/10.1007/s00299-013-1400-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1400-y

Keywords

Navigation