Skip to main content
Log in

M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

M-type thioredoxins are required to regulate zeaxanthin epoxidase activity and to maintain the steady-state level of the proton motive force, thereby influencing NPQ properties under low-light conditions in Arabidopsis.

Abstract

Non-photochemical quenching (NPQ) helps protect photosynthetic organisms from photooxidative damage via the non-radiative dissipation of energy as heat. Energy-dependent quenching (qE) is a major constituent of NPQ. However, the mechanism underlying the regulation of qE is not well understood. In this study, we demonstrate that the m-type thioredoxins TRX-m1, TRX-m2, and TRX-m4 (TRX-ms) interact with the xanthophyll cycle enzyme zeaxanthin epoxidase (ZE) and are required for maintaining the redox-dependent stabilization of ZE by regulating its intermolecular disulfide bridges. Reduced ZE activity and accumulated zeaxanthin levels were observed under TRX-ms deficiency. Furthermore, concurrent deficiency of TRX-ms resulted in a significant increase in proton motive force (pmf) and acidification of the thylakoid lumen under low irradiance, perhaps due to the significantly reduced ATP synthase activity under TRX-ms deficiency. The increased pmf, combined with acidification of the thylakoid lumen and the accumulation of zeaxanthin, ultimately contribute to the elevated stable qE in VIGS–TRX-m2m4/m1 plants under low-light conditions. Taken together, these results indicate that TRX-ms are involved in regulating NPQ-dependent photoprotection in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A:

Antheraxanthin

ATPβ:

β-subunit of ATP synthase complex

BiFC:

Bimolecular fluorescence complementation

DTT:

Dithiothreitol

ΔΨ:

Electric field gradient

ECS:

The electrochromic shift

HPLC:

High performance liquid chromatography

NPQ:

Non-photochemical quenching

NTRC:

NADPH–thioredoxin reductase C

Pmf:

Proton motive force

PSI:

Photosystem I

PSII:

Photosystem II

qE:

Energy-dependent quenching

ROS:

Reactive oxygen species

TRX:

Thioredoxin

V:

Violaxanthin

VIGS:

Tobacco rattle virus-based virus-induced gene silencing

VDE:

Violaxanthin de-epoxidase

Z:

Zeaxanthin

ZE:

Zeaxanthin epoxidase

References

  • Avenson TJ, Cruz JA, Kanazawa A, Kramer DM (2005) Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA 102:9709–9713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balmer Y, Koller A, del Val G, Manieri W, Schurmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci USA 100:370–375

    Article  CAS  PubMed  Google Scholar 

  • Balsera M, Uberegui E, Schurmann P, Buchanan BB (2014) Evolutionary development of redox regulation in chloroplasts. Antioxid Redox Signal 21:1327–1355

    Article  CAS  PubMed  Google Scholar 

  • Baumann U, Juttner J (2002) Plant thioredoxins: the multiplicity conundrum. Cell Mol Life Sci 59:1042–1057

    Article  CAS  PubMed  Google Scholar 

  • Benitez-Alfonso Y, Cilia M, San Roman A, Thomas C, Maule A, Hearn S, Jackson D (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci USA 106:3615–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks MD, Sylak-Glassman EJ, Fleming GR, Niyogi KK (2013) A thioredoxin-like/beta-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proc Natl Acad Sci USA 110:E2733-2740

    Article  Google Scholar 

  • Buchanan BB (2016) The Path to Thioredoxin and Redox Regulation in Chloroplasts. Annu Rev Plant Biol 67:1–24

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  PubMed  Google Scholar 

  • Bugos RC, Hieber AD, Yamamoto HY (1998) Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J Biol Chem 273:15321–15324

    Article  CAS  PubMed  Google Scholar 

  • Carrillo LR, Froehlich JE, Cruz JA, Savage LJ, Kramer DM (2016) Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. Plant J 87:654–663

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gallie DR (2015) Ethylene regulates energy-dependent non-photochemical quenching in arabidopsis through repression of the xanthophyll cycle. PLoS One 10:e0144209

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins HL (2003) The role of iron in infections with intracellular bacteria. Immunol Lett 85:193–195

    Article  CAS  PubMed  Google Scholar 

  • Cook KM, McNeil HP, Hogg PJ (2013) Allosteric control of betaII-tryptase by a redox active disulfide bond. J Biol Chem 288:34920–34929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courteille A, Vesa S, Sanz-Barrio R, Cazale AC, Becuwe-Linka N, Farran I, Havaux M, Rey P, Rumeau D (2013) Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Plant Physiol 161:508–520

    Article  CAS  PubMed  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field (Delta psi) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. control of pmf parsing into Delta psi and Delta pH by ionic strength. BioChemistry 40:1226–1237

    Article  CAS  PubMed  Google Scholar 

  • Cruz JA, Kanazawa A, Treff N, Kramer DM (2005) Storage of light-driven transthylakoid proton motive force as an electric field (Deltapsi) under steady-state conditions in intact cells of Chlamydomonas reinhardtii. Photosynth Res 85:221–233

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW 3rd (1990) The carotenoid zeaxanthin and ‘high-energy-state quenching’ of chlorophyll fluorescence. Photosynth Res 25:187–197

    Article  CAS  PubMed  Google Scholar 

  • Deng C, Shao H, Pan X, Wang S, Zhang D (2014) Herbicidal effects of harmaline from Peganum harmala on photosynthesis of Chlorella pyrenoidosa: probed by chlorophyll fluorescence and thermoluminescence. Pestic Biochem Physiol 115:23–31

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ (2015) Efficient high light acclimation involves rapid processes at multiple mechanistic levels. J Exp Bot 66:2401–2414

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ (2016) Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol Cells 39:20–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz KJ, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Duan Z, Kong F, Zhang L, Li W, Zhang J, Peng L (2016) A bestrophin-like protein modulates the proton motive force across the thylakoid membrane in Arabidopsis. J Integr Plant Biol 58:848–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Ballicora MA, Leykam JF, Preiss J (1998) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J Biol Chem 273:25045–25052

    Article  CAS  PubMed  Google Scholar 

  • Gilmore AM, Yamamoto HY (1992) Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci USA 89:1899–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmore AM, Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35:67–78

    Article  CAS  PubMed  Google Scholar 

  • Hall M, Mata-Cabana A, Akerlund HE, Florencio FJ, Schroder WP, Lindahl M, Kieselbach T (2010) Thioredoxin targets of the plant chloroplast lumen and their implications for plastid function. Proteomics 10:987–1001

    CAS  PubMed  Google Scholar 

  • Hieber AD, Kawabata O, Yamamoto HY (2004) Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles. Plant Cell Physiol 45:92–102

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    Article  CAS  PubMed  Google Scholar 

  • Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PG, Hisabori T, Takamiya K, Masuda T (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282:19282–19291

    Article  CAS  PubMed  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  CAS  PubMed  Google Scholar 

  • Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Liu B, Luo L, Feng D, Wang P, Liu J, Da Q, He Y, Qi K, Wang J, Wang HB (2014) hypersensitive to high light1 interacts with low quantum YIELD OF photosystem II1 and functions in protection of photosystem II from photodamage in Arabidopsis. Plant Cell 26:1213–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalituho L, Beran KC, Jahns P (2007) The transiently generated nonphotochemical quenching of excitation energy in Arabidopsis leaves is modulated by zeaxanthin. Plant Physiol 143:1861–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanazawa A, Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci USA 99:12789–12794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang ZH, Wang GX (2016) Redox regulation in the thylakoid lumen. J Plant Physiol 192:28–37

    Article  CAS  PubMed  Google Scholar 

  • Konno H, Suzuki T, Bald D, Yoshida M, Hisabori T (2004) Significance of the epsilon subunit in the thiol modulation of chloroplast ATP synthase. Biochem Biophys Res Commun 318:17–24

    Article  CAS  PubMed  Google Scholar 

  • Kromdijk J, Glowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861

    Article  CAS  PubMed  Google Scholar 

  • Latowski D, Kruk J, Strzalka K (2005) Inhibition of zeaxanthin epoxidase activity by cadmium ions in higher plants. J Inorg Biochem 99:2081–2087

    Article  CAS  PubMed  Google Scholar 

  • Li XP, Muller-Moule P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci USA 99:15222–15227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Hall DA, Last RL (2011) A small zinc finger thylakoid protein plays a role in maintenance of photosystem II in Arabidopsis thaliana. Plant Cell 23:1861–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo T, Fan T, Liu Y, Rothbart M, Yu J, Zhou S, Grimm B, Luo M (2012) Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol 159:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367

    Article  CAS  PubMed  Google Scholar 

  • Michalska J, Zauber H, Buchanan BB, Cejudo FJ, Geigenberger P (2009) NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc Natl Acad Sci USA 106:9908–9913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelet L, Zaffagnini M, Morisse S, Sparla F, Perez-Perez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD (2013) Redox regulation of the Calvin-Benson cycle: something old, something new. Front Plant Sci 4:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen R, Mutenda KE, Mant A, Schurmann P, Blennow A (2005) Alpha-glucan, water dikinase (GWD): a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proc Natl Acad Sci USA 102:1785–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalin CM, McCarty RE (1984) Role of a disulfide bond in the gamma subunit in activation of the ATPase of chloroplast coupling factor 1. J Biol Chem 259:7275–7280

    CAS  PubMed  Google Scholar 

  • Naranjo B, Mignee C, Krieger-Liszkay A, Hornero-Mendez D, Gallardo-Guerrero L, Cejudo FJ, Lindahl M (2016) The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant Cell Environ 39:804–822

    Article  CAS  PubMed  Google Scholar 

  • Neumann J, Ke B, Dilley RA (1970) The relation of the 515 nanometers absorbance change to adenosine triphosphate formation in chloroplasts and digitonin subchloroplast particles. Plant Physiol 46:86–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikkanen L, Toivola J, Rintamaki E (2016) Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant Cell Environ 39:1691–1705

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okegawa Y, Motohashi K (2015) Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. Plant J 84:900–913

    Article  CAS  PubMed  Google Scholar 

  • Reinhold C, Niczyporuk S, Beran KC, Jahns P (2008) Short-term down-regulation of zeaxanthin epoxidation in Arabidopsis thaliana in response to photo-oxidative stress conditions. Biochim Biophys Acta 1777:462–469

    Article  CAS  PubMed  Google Scholar 

  • Richter AS, Grimm B (2013) Thiol-based redox control of enzymes involved in the tetrapyrrole biosynthesis pathway in plants. Front Plant Sci 4:371

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CD (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Kozaki A, Hatano M (1997) Link between light and fatty acid synthesis: thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proc Natl Acad Sci USA 94:11096–11101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlicke H, Hartwig AS, Firtzlaff V, Richter AS, Glasser C, Maier K, Finkemeier I, Grimm B (2014) Induced deactivation of genes encoding chlorophyll biosynthesis enzymes disentangles tetrapyrrole-mediated retrograde signaling. Mol Plant 7:1211–1227

    Article  CAS  PubMed  Google Scholar 

  • Schurmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1274

    Article  CAS  PubMed  Google Scholar 

  • Schwarz O, Schurmann P, Strotmann H (1997) Kinetics and thioredoxin specificity of thiol modulation of the chloroplast H+-ATPase. J Biol Chem 272:16924–16927

    Article  CAS  PubMed  Google Scholar 

  • Serrato AJ, Fernandez-Trijueque J, Barajas-Lopez JD, Chueca A, Sahrawy M (2013) Plastid thioredoxins: a “one-for-all” redox-signaling system in plants. Front Plant Sci 4:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Seung D, Thalmann M, Sparla F, Abou Hachem M, Lee SK, Issakidis-Bourguet E, Svensson B, Zeeman SC, Santelia D (2013) Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic alpha-amylase. J Biol Chem 288:33620–33633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikanai T (2016) Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I. Photosynth Res 129:253–260

    Article  CAS  PubMed  Google Scholar 

  • Spetea C, Rintamaki E, Schoefs B (2014) Changing the light environment: chloroplast signalling and response mechanisms. Philos Trans R Soc Lond B Biol Sci 369:20130220

    Article  PubMed  PubMed Central  Google Scholar 

  • Takizawa K, Kanazawa A, Kramer DM (2008) Depletion of stromal P(i) induces high ‘energy-dependent’ antenna exciton quenching (q(E)) by decreasing proton conductivity at CF(O)-CF(1) ATP synthase. Plant Cell Environ 31:235–243

    Article  CAS  PubMed  Google Scholar 

  • Thormahlen I, Ruber J, von Roepenack-Lahaye E, Ehrlich SM, Massot V, Hummer C, Tezycka J, Issakidis-Bourguet E, Geigenberger P (2013) Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants. Plant Cell Environ 36:16–29

    Article  PubMed  Google Scholar 

  • Thormahlen I, Meitzel T, Groysman J, Ochsner AB, von Roepenack-Lahaye E, Naranjo B, Cejudo FJ, Geigenberger P (2015) Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiol 169:1766–1786

    PubMed  PubMed Central  Google Scholar 

  • Tikkanen M, Grieco M, Nurmi M, Rantala M, Suorsa M, Aro EM (2012) Regulation of the photosynthetic apparatus under fluctuating growth light. Philos Trans R Soc Lond B Biol Sci 367:3486–3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Liu J, Liu B, Feng D, Da Q, Shu S, Su J, Zhang Y, Wang J, Wang HB (2013) Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. Plant Physiol 163:1710–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Yamamoto H, Shikanai T (2015) Role of cyclic electron transport around photosystem I in regulating proton motive force. Biochim Biophys Acta 1847:931–938

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81–106

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Shikanai T, Makino A (2015) Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Sci Rep 5:13908

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Hara S, Hisabori T (2015) Thioredoxin selectivity for thiol-based redox regulation of target proteins in chloroplasts. J Biol Chem 290:19540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Cruz JA, Kramer DM, Magallanes-Lundback ME, Dellapenna D, Sharkey TD (2009) Moderate heat stress reduces the pH component of the transthylakoid proton motive force in light-adapted, intact tobacco leaves. Plant Cell Environ 32:1538–1547

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Liu Y, Ni Y, Meng Z, Lu T, Li T (2014) Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. PLoS One 9:e97322

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu XG, Ort DR, Whitmarsh J, Long SP (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J Exp Bot 55:1167–1175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bernhard Grimm and Peng Wang (Humboldt-University Berlin, Germany) for technical support and critical reading of the manuscript, Yule Liu (Tsinghua University) for sharing the TRV-based VIGS vectors, Tomas Morosinotto (University of Padova, Italy) for providing us with the VDE antibody, Chuxiong Zhuang and Jing Li (South China Agricultural University) for supporting Dual-PAM 100 analysis, Chunyan Zhang and Yan Yin (Key Laboratory of Photobiology, CAS) for help with the gH + protocol, and Alexander V. Ruban (Queen Mary University of London) for providing us with suggestions for experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Liu.

Ethics declarations

Financial support

This work was supported by the National Science and Technology Major Project Foundation of China (No. 2016ZX08009003-005-005), the National Natural Science Foundation of China (No. 31,425,003, No. 31,370,297, and No. 31,500,195), and a grant from the International Program for Ph.D. Candidates, Sun Yat-Sen University (No. 52,114,000).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Salim Al-Babili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 377 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, Q., Sun, T., Wang, M. et al. M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis. Plant Cell Rep 37, 279–291 (2018). https://doi.org/10.1007/s00299-017-2229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2229-6

Keywords

Navigation