Skip to main content
Log in

Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer?

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Sea ice is permeated by small brine channels, which are characterised by sub-zero temperatures and varying salinities. Despite sometimes extreme conditions a diverse fauna and flora thrives within the brine channels. The dominant calanoid copepods of Antarctic sea ice are Stephos longipes and Paralabidocera antarctica. Here, I report for the first time thermal hysteresis (TH) in the haemolymph of a crustacean, S. longipes, whereas P. antarctica has no such activity. TH, the non-colligative prevention of ice growth, seems to enable S. longipes to exploit all available microhabitats within sea ice, especially the surface layer, in which strong temperature fluctuations can occur. In contrast, P. antarctica only thrives within the lowermost centimetres of sea ice, where temperature fluctuations are moderate. S. longipes possesses two isoforms of a protein with TH activity. A high homology to a group of (putative) antifreeze proteins from diatoms, bacteria and a snow mold and, in contrast, no homologs in any metazoan lineage suggest that this protein was obtained through horizontal gene transfer (HGT). Further analysis of available sequence data from sea-ice organisms indicates that these antifreeze proteins were probably transferred horizontally several times. Temperature and salinity fluctuations within the brine channel system are proposed to provide “natural transformation” conditions enabling HGT and thus making this habitat a potential “hot spot” for HGT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Aa:

Amino acid

AFP:

Antifreeze protein

AF(G)P:

Antifreeze(glyco)protein

eEF-1α:

Eukaryotic elongation factor 1 alpha

FSW:

Filtered seawater

HGT:

Horizontal gene transfer

HSP70:

Heat shock protein 70

RI:

Recrystallization inhibition

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SSH:

Suppression subtractive hybridization

TH:

Thermal hysteresis

References

  • Aarset AV (1991) The ecophysiology of under-ice fauna. Polar Res 10:309–324

    Article  Google Scholar 

  • Ackley SF, Sullivan CW (1994) Physical controls on the development and characteristics of Antarctic sea ice biological communities—review and synthesis. Deep-Sea Res I 41:1583–1604

    Article  Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    Article  CAS  PubMed  Google Scholar 

  • Arndt CE, Swadling KM (2006) Crustacea in Arctic and Antarctic sea ice: distribution, diet and life history strategies. Adv Mar Biol 51:197–315

    Article  PubMed  Google Scholar 

  • Arrigo KR, Worthen DL, Lizotte MP, Dixon P, Dieckmann G (1997) Primary production in Antarctic sea ice. Science 276:394–397

    Article  CAS  PubMed  Google Scholar 

  • Assur A (1958) Composition of sea ice and its tensile strength. Nat Res Council Publ 598:106–138

    Google Scholar 

  • Augustin R, Franke A, Khalturin K, Kiko R, Siebert S, Hemmrich G, Bosch TCG (2006) Dickkopf related genes are components of the positional value gradient in Hydra. Dev Biol 296:62–70

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Bezier A, Annaheim M, Herbiniere J, Wetterwald C, Gyapay G, Bernard-Samain S, Wincker P, Roditi I, Heller M, Belghazi M, Pfister-Wilhem R, Periquet G, Dupuy C, Huguet E, Volkoff A-N, Lanzrein B, Drezen J-M (2009) Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323:926–930

    Article  CAS  PubMed  Google Scholar 

  • Cavalieri DJ, Parkinson CL, Vinnikov KY (2003) 30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys Res Lett 30:1970. doi:10.1029/2003GL018031

    Article  Google Scholar 

  • Chen L, DeVries AL, Cheng CC (1997) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci USA 94:3817–3822

    Article  CAS  PubMed  Google Scholar 

  • Cheng CC (1998) Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev 8:715–720

    Article  CAS  PubMed  Google Scholar 

  • Dahlberg C, Bergstrom M, Hermansson M (1998) In situ detection of high levels of horizontal plasmid transfer in marine bacterial communities. Appl Environ Microbiol 64:2670–2675

    CAS  PubMed  Google Scholar 

  • DeVries AL (1982) Biological antifreeze agents in coldwater fishes. Comp Biochem Physiol A 73:627–640

    Article  Google Scholar 

  • DeVries AL (1986) Antifreeze glycopeptides and peptides: Interactions with ice and water. Methods Enzymol 127:293–303

    Article  CAS  PubMed  Google Scholar 

  • Diatchenko L, Lau Y-FC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  CAS  PubMed  Google Scholar 

  • Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357

    Article  CAS  PubMed  Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology 30:322–328

    Article  Google Scholar 

  • Dunning Hotopp JC, Clark ME, Oliveira DSCG, Foster JM, Fischer P, Munoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    Article  CAS  Google Scholar 

  • Eck RV, Dayhoff MO (1966) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Springs, Maryland

    Google Scholar 

  • Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13

    Article  Google Scholar 

  • Enevoldsen LT, Heiner I, DeVries AL, Steffensen JF (2003) Does fish from the Disko Bay area of Greenland possess antifreeze proteins during the summer? Polar Biol 26:365–370

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fraune S, Bosch TCG (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA 104:13146–13151

    Article  CAS  PubMed  Google Scholar 

  • Garrison DL, Buck KR (1987) Algal assemblages in Antarctic pack ice and in ice-edge plankton. J Phycol 23:564–572

    Google Scholar 

  • Garrison DL, Close AR, Reimnitz E (1989) Algae concentrated by frazil ice: evidence from laboratory experiments and field measurements. Antarct Sci 1:313–316

    Article  Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IA (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Graham LA, Lougheed SC, Ewart KV, Davies PL (2008) Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS ONE 3:e2616

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Guglielmo L, Zagami L, Saggiomo V, Catalano G, Granata A (2007) Copepods in spring annual sea ice at Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 30:747–758

    Article  Google Scholar 

  • Günther S, George KH, Gleitz M (1999) High sympagic metazoan abundance in platelet layers at Drescher Inlet, Weddell Sea, Antarctica. Polar Biol 22:82–89

    Article  Google Scholar 

  • Habetha M, Bosch TCG (2005) Symbiotic Hydra express a plant-like peroxidase gene during oogenesis. J Exp Biol 208:2157–2164

    Article  CAS  PubMed  Google Scholar 

  • Hargens AR, Shabica SV (1973) Protection against lethal freezing temperatures by mucus in an Antarctic limpet. Cryobiology 10:331–337

    Article  CAS  PubMed  Google Scholar 

  • Horner R, Ackley SF, Dieckmann GS, Gulliksen B, Hoshiai T, Legendre L, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biol 12:417–427

    Article  Google Scholar 

  • Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81:1175–1181

    Article  CAS  Google Scholar 

  • Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416

    Article  CAS  Google Scholar 

  • Jin Y, DeVries AL (2006) Antifreeze glycoprotein levels in Antarctic notothenioid fishes inhabiting different thermal environments and the effect of warm acclimation. Comp Biochem Physiol B 144:290–300

    Article  PubMed  CAS  Google Scholar 

  • Kattner G, Thomas DN, Haas C, Kennedy H, Dieckmann GS (2004) Surface ice and gap layers in Antarctic sea ice: highly productive habitats. Mar Ecol Prog Ser 277:1–12

    Article  Google Scholar 

  • Keeling PJ, Doolittle WF (1995) Archaea: narrowing the gap between prokaryotes and eukaryotes. Proc Natl Acad Sci USA 92:5761–5764

    Article  CAS  PubMed  Google Scholar 

  • Kiko R, Michels J, Mizdalski E, Schnack-Schiel SB, Werner I (2008a) Living conditions, abundance and composition of the metazoan fauna in surface and sub-ice layers in pack ice of the western Weddell Sea during late spring. Deep-Sea Res II 55:1000–1014

    Article  Google Scholar 

  • Kiko R, Kramer M, Spindler M, Wägele H (2008b) Tergipes antarcticus (Gastropoda, Nudibranchia): distribution, life cycle, morphology, anatomy and adaptation of the first mollusc known to live in Antarctic sea ice. Polar Biol 31:1383–1395

    Article  Google Scholar 

  • Kiko R, Werner I, Wittmann A (2008c) Osmotic and ionic regulation in response to salinity variations and cold resistance in the Arctic under-ice amphipod Apherusa glacialis. Polar Biol 32:393–398

    Article  Google Scholar 

  • Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci USA 99:14280–14285

    Article  CAS  PubMed  Google Scholar 

  • Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Biol Ecol 243:55–80

    Article  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implication for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res I 49:2163–2181

    CAS  Google Scholar 

  • Kurbjeweit F, Gradinger R, Weissenberger J (1993) The life cycle of Stephos longipes—an example for cryopelagic coupling in the Weddell Sea (Antarctica). Mar Ecol Prog Ser 98:255–262

    Article  Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    Article  CAS  PubMed  Google Scholar 

  • Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CA, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718–721

    Article  CAS  PubMed  Google Scholar 

  • Mallet F, Bouton O, Prudhomme S, Cheynet V, Oriol G, Bonnaud B, Lucotte G, Duret L, Mandrand B (2004) The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA 101:1731–1736

    Article  CAS  PubMed  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Mark FC, Lucassen M, Pörtner H–O (2006) Thermal sensitivity of uncoupling proteins in polar and temperate fish. Comp Biochem Physiol D1:365–374

    Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    Article  CAS  PubMed  Google Scholar 

  • Massom RA, Eicken H, Haas C, Jeffries MO, Drinkwater MR, Sturm M, Worby AP, Wu X, Lyle VI, Ushio S, Morris K, Reid PA, Warren SG, Allison I (2001) Snow on Antarctic sea ice. Rev Geophys 39:413–445

    Article  Google Scholar 

  • McKenzie Bird D, Koltai H (2000) Plant parasitic nematodes: habitats, hormones and horizontally-acquired genes. J Plant Growth Regul 19:183–194

    Google Scholar 

  • Millero FJ, Feistel R, Wright DG, McDougall TJ (2008) The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res I 55:50–72

    Article  Google Scholar 

  • Mueller GM, McKown RL, Corotto LV, Hague C, Warren GJ (1991) Inhibition of recrystallization in ice by chimeric proteins containing antifreeze domains. J Biol Chem 266:7339–7344

    CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, Shimada M, Fukatsu T (2008) Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res 18:272–280

    Article  CAS  PubMed  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA (2000) Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biol 23:721–729

    Article  Google Scholar 

  • Raymond JA, Fritsen CH (2000) Ice-active substances associated with Antarctic freshwater and terrestrial photosynthetic organism. Antarct Sci 12:418–424

    Article  Google Scholar 

  • Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity ice-active of substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46:174–181

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA, Sullivan CW, DeVries AL (1994) Release of an ice-active substance by Antarctic sea ice diatoms. Polar Biol 14:71–75

    Article  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221

    Article  CAS  PubMed  Google Scholar 

  • Schierwater B, Eitel M, Jakob W, Osigus H-J, Hadrys H, Dellaporta SL, Kolokotronis S–O, DeSalle R (2008) Concatenated analysis sheds light on early metazoan evolution and fuels a modern “urmetazoon” hypothesis. PLoS Biol 7:e1000020

    Google Scholar 

  • Schnack-Schiel SB, Thomas DN, Dieckmann GS, Eicken H, Gradinger R, Spindler M, Weissenberger J, Mizdalski E, Beyer K (1995) Life cycle strategy of the Antarctic calanoid copepod Stephos longipes. Prog Oceanogr 36:45–75

    Article  Google Scholar 

  • Schnack-Schiel SB, Thomas DN, Dahms H-U, Haas C, Mizdalski E (1998) Copepods in Antarctic sea ice. Antarct Res Ser 73:173–182

    Google Scholar 

  • Schnack-Schiel SB, Haas C, Michels J, Mizdalski E, Schünemann H, Steffens M, Thomas DN (2008) Copepods in sea ice of the western Weddell Sea during austral spring 2004. Deep-Sea Res II 55:1056–1067

    Article  Google Scholar 

  • Schünemann H, Werner I (2005) Seasonal variations in distribution patterns of sympagic meiofauna in Arctic pack ice. Mar Biol 146:1091–1102

    Article  Google Scholar 

  • Sullivan CW, Palmisano AC (1984) Sea ice microbial communities: distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl Environ Microbiol 47:788–795

    PubMed  CAS  Google Scholar 

  • Swadling KM (2001) Population structure of two Antarctic ice-associated copepods, Drescheriella glacialis and Paralabidocera antarctica, in winter sea-ice. Mar Biol 139:597–603

    Article  Google Scholar 

  • Swadling KM, Gibson JAE, Ritz DA, Nichols PD (1997) Horizontal patchiness in sympagic organisms of the Antarctic fast ice. Antarct Sci 9:399–406

    Article  Google Scholar 

  • Swadling KM, McKinnon AD, De'ath G, Gibson JAE (2004) Life cycle plasticity and differential growth and development in marine and lacustrine populations of an Antarctic copepod. Limnol Oceanogr 49:644–655

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tanimura A, Hoshiai T, Fukuchi M (1996) The life cycle strategy of the ice-associated copepod Paralabidocera antarctica (Calanoida, Copepoda), at Syowa Station, Antarctica. Antarct Sci 8:257–266

    Article  Google Scholar 

  • Tanimura A, Hoshiai T, Fukuchi M (2002) Change in habitat of the sympagic copepod Paralabidocera antarctica from fast ice to seawater. Polar Biol 25:667–671

    Google Scholar 

  • Theede H, Schneppenheim R, Béress L (1976) Frostschutz-Glykoproteine bei Mytilus edulis? Mar Biol 36:183–189

    Article  CAS  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice: a habitat for extremophiles. Science 295:641–644

    Article  CAS  PubMed  Google Scholar 

  • Vihma T, Uotila H, Cheng B, Launiainen J (2002) Surface heat budget over the Weddell Sea: Buoy results and model comparisons. J Geophys Res 107(C2):3013

    Article  Google Scholar 

  • Waller CL, Worland MR, Convey P, Barnes DKA (2006) Ecophysiology strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol 29:1077–1083

    Article  Google Scholar 

  • Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TCG (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci USA 103:6208–6211

    Google Scholar 

  • Xu HH, Tabita FR (1996) Ribulose-1, 5-biphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl Environ Microbiol 62:1913–1921

    CAS  PubMed  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in Global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are first of all due to I. Werner for her support during all phases of this study. I am grateful to captains, crews and colleagues (especially S. Schnack-Schiel, H. Schünemann and M. Kramer) for their help during the expeditions with R/V Polarstern. I furthermore thank H.-O. Pörtner for the opportunity to work in his labs and especially M. Lucassen for providing excellent facilities and tips for molecular biological work. U. John is thanked for help with sequencing parts of the cDNA library, G. Hemmrich for help with clustering the ESTs, T. C. G. Bosch for providing the vector and bacteria for the recombinant expression experiment and G. Dieckmann and C. Uhlig for diatom cultures and cDNA. I would furthermore like to thank I. Werner, M. Kramer, S. Siebert and M. Lucassen for critically reading the manuscript and three anonymous reviewers for excellent comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Kiko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material S1 (PDF 86 kb)

Supplementary material S2 (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiko, R. Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer?. Polar Biol 33, 543–556 (2010). https://doi.org/10.1007/s00300-009-0732-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-009-0732-0

Keywords

Navigation