Skip to main content

Advertisement

Log in

Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Perennially ice-covered, meromictic lakes in the McMurdo Dry Valleys, Antarctica, are useful models to study the relationship between cyanobacterial and environmental variables. They have rich benthic cyanobacterial mat accumulations and stable stratification of physical and chemical conditions. Here, we evaluated cyanobacteria from benthic mats from multiple depths in three geographically separated ice-covered lakes, Lakes Vanda, Hoare and Joyce, using 16S rRNA gene clone libraries. We identified 19 ribotypes, mostly Oscillatoriales and several Chroococcales, as well as potentially novel cyanobacterial ribotypes. The majority of ribotype diversity was shared between lakes, and only a weak relationship between ribotype community structure and environmental variables was evident. Multivariate analysis of all lake–depth combinations implied that photosynthetically active radiation, dissolved reactive phosphorus and conductivity were potentially important for shaping benthic communities in McMurdo Dry Valley lakes. Cyanobacterial-specific pigment signature analysis by high-performance liquid chromatography showed that the cyanobacterial communities responded to light conditions similarly, irrespective of community composition. The results imply a capability within a suite of cyanobacteria to colonise, adapt and grow across broad environmental ranges and geographic space, and such adaptability may provide a high degree of community resistance and resilience to future climate-driven environmental change in Antarctic terrestrial aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Am Soc 105:11512–11519

    Article  CAS  Google Scholar 

  • Allnutt FTC, Parker BC, Seaburg KG, Simmons GM (1981) In situ nitrogen (C2H2) fixation in lakes of southern Victoria Land, Antarctica. Hydrobiol Bull 51:99–109

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Andersen DT, Sumner DY, Hawes I, Webster-Brown J, MCKay CP (2011) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9:280–293

    Article  CAS  PubMed  Google Scholar 

  • Bomblies A, McKnight DM, Andrews ED (2001) Retrospective simulation of lake-level rise in Lake Bonney based on recent 21-yr record: indication of recent climate change in the McMurdo Dry Valleys, Antarctica. J Paleolimnol 25:477–492

    Article  Google Scholar 

  • Broady P, Kibblewhite A (1991) Morphological characterisation of Oscillatoria (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarct Sci 3:35–45

    Article  Google Scholar 

  • De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc B 276:3591–3599

    Article  PubMed Central  PubMed  Google Scholar 

  • Fountain AG, Nylen TH, Monaghan A, Basagic HJ, Bromwich D (2009) Snow in the McMurdo Dry Valleys, Antarctica. Int J Climatol 30:633–642

    Google Scholar 

  • Green WJ, Lyons WB (2009) The saline lakes of the McMurdo Dry Valleys, Antarctica. Aquat Geochem 15:321–348

    Article  CAS  Google Scholar 

  • Hawes I, Schwarz A-M (1999) Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. J Phycol 35:448–459

    Article  CAS  Google Scholar 

  • Hawes I, Schwarz A-M (2001) Absorption and utilization of low irradiance by cyanobacterial mats in two ice-covered Antarctic lakes. J Phycol 37:5–15

    Article  CAS  Google Scholar 

  • Hawes I, Sumner DY, Andersen DT, Mackey TJ (2011) Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice-covered Antarctic lake. Geobiology 9:394–410

    Article  CAS  PubMed  Google Scholar 

  • Hawes I, Sumner DY, Andersen DT, Jungblut AD, Mackey TJ (2013a) Timescales of growth response of microbial mats to environmental change in an ice-covered Antarctic lake. Biology 2:151–176

    Article  PubMed Central  PubMed  Google Scholar 

  • Hawes I, Howard-Williams C, Sorrell B (2013b) Decadal variability in ecosystem properties in the ponds of the McMurdo Ice Shelf, Southern Victoria Land, Antarctica on decadal timescales. Antarct Sci 26:219–230

    Article  Google Scholar 

  • Howard-Williams C, Pridmore R, Downes M, Vincent VF (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Antarct Sci 1:125–131

    Article  Google Scholar 

  • Howard-Williams C, Schwarz A-M, Hawes I, Priscu JC (1998) Optical properties of the McMurdo Dry Valley lakes. In: Priscu JC (ed) Ecosystem dynamics in a Polar Desert: the McMurdo Dry Valleys, Antarctica, Antarctic research series, vol 72. American Geophysical Union, Washington DC, pp 189–203

    Google Scholar 

  • Huber JA, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  • Jepsen SM, Adams EE, Priscu JC (2010) Sediment melt-migration dynamics in perennial Antarctic lake ice. Arct Antarct Alp Res 42:57–66

    Article  Google Scholar 

  • Jungblut AD, Neilan BA (2010) Cyanobacteria mats of the meltwater ponds on the McMurdo Ice Shelf (Antarctica). In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems. Cellular origin, life in extreme habitats and astrobiology. Springer, Berlin, pp 499–514

  • Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529

    Article  CAS  PubMed  Google Scholar 

  • Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202

    Article  CAS  PubMed  Google Scholar 

  • Jungblut AD, Wood AD, Webster-Brown J, Harris C (2012) The pyramid trough wetland: environmental and biological diversity in a newly created Antarctic protected area. FEM Microb Ecol 82:356–366

    Article  CAS  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8225–8235

    Article  Google Scholar 

  • Lozupone C, Hamady M, Knight R (2006) UniFrac—An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform 7:371

    Article  Google Scholar 

  • Lyons WB, Finlay JC (2008) Biogeochemical processes in high-latitude lakes and rivers. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press Inc., New York, pp 137–156

    Chapter  Google Scholar 

  • McKay C, Clow G, Andersen D, Wharton R (1994) Light transmission and reflection in perennially ice-covered Lake Hoare, Antarctica. J Geophys Res Oceans 99:20427–20444

  • Michaud AB, Sabacká M, Priscu JC (2012) Cyanobacterial diversity across landscape units in a polar desert: Taylor Valley, Antarctica. FEMS Microbiol Ecol 82:268–278

    Article  CAS  PubMed  Google Scholar 

  • Nadeau TL, Milbrandt EC, Castenholz RW (2001) Evolutionary relationships of cultivated Antarctic oscillatorians (cyanobacteria). J Phycol 37:650–654

    Article  Google Scholar 

  • Novis PM, Smissen RD (2006) Two genetic and ecological groups of Nostoc commune in Victoria Land, Antarctica, revealed by AFLP analysis. Antarct Sci 18:573–581

    Article  Google Scholar 

  • Parker BC, Simmons GM, Wharton RA, Seaburg G, Love FG (1982) Removal of organic and inorganic matter from Antarctic lakes by aerial escape of bluegreen algal mats. J Phycol 18:72–78

    Article  Google Scholar 

  • Peeters K, Hodgson DA, Convey P, Willems A (2011) Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundstrom Lake (Shackleton Range), Antarctica. Microb Ecol 62:399–413

    Article  PubMed  Google Scholar 

  • Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshw Biol 34:215–227

    Article  Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CW, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098

    Article  CAS  PubMed  Google Scholar 

  • Quesada A, Vincent WF (2012) Cyanobacteria in the cryosphere: snow, ice and extreme cold. In: Whitton BA (ed) Ecology of Cyanobacteria II: their diversity in space and time. Springer Science & Business Media, Dordrecht, pp 387–399

    Chapter  Google Scholar 

  • Quesada A, Fernandez-Valiente E, Hawes I, Howard-Williams C (2008) Benthic primary production in polar lakes and rivers. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press Inc., New York, pp 179–196

    Chapter  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simmons GM, Wharton RA, Vestal JA (1993) Environmental regulators of microbial activity in continental Antarctic lakes. In: Green WJ, Friedmann EI (eds) Physical and Biogeochemical processes in Antarctic lakes. American Geophysical Union, Washington, D.C., pp 165–195

    Chapter  Google Scholar 

  • Sogin M, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Am Soc 103:12115–12120

    Article  CAS  Google Scholar 

  • Squyres SW, Andersen DW, Nedell SS, Wharton RA (1991) Lake Hoare, Antarctica: sedimentation through a thick perennial ice cover. Sedimentology 38:363–379

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web server. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Strunecky O, Komárek J, Johansen J, Lukešová A, Elster J (2013) Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, cyanobacteria). J Phycol 49:1167–1180

    Article  CAS  Google Scholar 

  • Sutherland D, Hawes I (2009) Annual growth layers as proxies of past growth conditions for benthic microbial mats in a perennially ice-covered Antarctic lake. FEMS Microb Ecol 67:279–292

    Article  CAS  Google Scholar 

  • Taton AS, Grubisic E, Brambilla R, Wit De, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taton AS, Grubisic E, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    Article  CAS  PubMed  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows User’s Guide: software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, NY

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55:1901–1911

    Article  CAS  Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 321–340

    Google Scholar 

  • Vincent WF, Vincent C (1982) Factors controlling phytoplankton production in Lake Vanda (77°S). Can J Fish Aquat Sci 39:1602–1609

    Article  Google Scholar 

  • Vincent WF, Rae R, Laurion I, Howard-Williams C, Priscu JC (1998) Transparency of Antarctic lakes to solar ultraviolet radiation. Limnol Oceanogr 43:618–624

    Article  Google Scholar 

  • Vincent WF, Maclntyre S, Spigel RH, Laurio I (2008) The physical limnology of high-latitude lakes. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers: limnology of arctic and antarctic aquatic ecosystems. Oxford University Press Inc., New York, pp 65–81

    Chapter  Google Scholar 

  • Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, WillemA Peeters K, Van de Vijver B, De Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic microorganisms. Polar Sci 4:103–113

    Article  Google Scholar 

  • Wharton RA, Parker BC, Simmons GM (1983) Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. Phycologia 22:355–365

    Article  Google Scholar 

  • Wharton RA, McKay C, Clow G, Andersen D (1993) Perennial ice covers and their influence on Antarctic lake ecosystems. Antarc Res Ser ANTSA 4:53–70

  • Zakhia F, Jungblut AD, Taton A, Vincent WF, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Marx JC, Gerday C (eds) Psychrophiles from biodiversity to biotechnology. Springer, Berlin, pp 121–135

    Chapter  Google Scholar 

  • Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the support from NASA’s Exobiology (NNX08AO19G) and Astrobiology (NNX09AE77A) programs; logistic support was provided by the US National Science Foundation Office of Polar Programs. We would like to acknowledge the interaction with the Taylor Valley Long-Term Ecological Research Programme (NSF Grant 115245), Stephen Emmons for assistance with the sample collection and three anonymous reviewers for insightful comments and suggestions.

Conflict of interest

The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Jungblut.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jungblut, A.D., Hawes, I. et al. Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica. Polar Biol 38, 1097–1110 (2015). https://doi.org/10.1007/s00300-015-1669-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1669-0

Keywords

Navigation